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Figure 1. Regional geological map showing the study area within East Qinling orogenic belt (revised after Mao et al., 2010). 

 
collisional setting. In fact, most researchers have suggested that 
these intrusions were the products of crust-mantle interaction, 
and that they were mainly derived from the ancient lower conti-
nental crust of the NCC involved with a small portion of mantle 
materials (Zeng et al., 2013a, b; Li N et al., 2012; Qi et al., 2012; 
Hu et al., 2011; Mao et al., 2011, 2010; Wang et al., 2011; Gao 
et al., 2010; Dai et al., 2009; Guo et al., 2009; Ye et al., 2008a).  

However, the mixing proportions of crust and mantle are 
still unknown. Previous studies have shown that these small 
intrusions were formed between ~158 and ~108 Ma, which 
corresponds to Late Jurassic–Early Cretaceous magmatic activ-
ity (Gao et al., 2014; Li N et al., 2012; Hu et al., 2011; Ding et 
al., 2010; Mao et al., 2010), and during this period the tectonic 
mechanism of the southern NCC margin was transformed from 
compression to extension (Xu et al., 2013; Zhai et al., 2004, 
2003). Mao et al. (2010) declareed that intensive magmatism 
was resulted from a lithospheric thinning processes, which may 
have been induced by either thermal erosion and metasomatism 
of the subcontinental lithospheric mantle beneath eastern China 
(Griffin et al., 1998; Menzies and Xu, 1998), or by lithospheric 
delamination (Deng et al., 2007, 2004; Wu et al., 2005; Gao et 
al., 2004, 2002).  

In this paper, the Houyaoyu granite porphyries in East 
Qinling are examined on the basis of geochronology, major- 
trace elemental and Sr-Nd isotopic compositions. It is suggested 
that the parental magma of the Houyaoyu granite porphyries 
was mostly derived from partial melting of an over-thickened 
lower continental crust that was induced by the transformation 
of the structural system from extrusion to extension together 
with the involvement of a small amount of mantle material. 
This study also reveals the discovery of enclaves existing in the 
Houyaoyu granite porphyries. Based on Sr-Nd isotopic compo-
sitions, these enclaves are considered to be representative of the 
lower NCC crust, which dominantly generated the granitic 

porphyries. Thus, the present study probably provides common 
petrogenetic evidence for the magmatic intrusions that formed 
during the Early Cretaceous in East Qinling.  
 
1  GEOLOGICAL SETTING 

The Qinling Orogen is a complex orogenic belt, which rec-
orded the development of plate tectonics from oceanic subduc-
tion and arc-type magmatism to arc-continent and continent- 
continent collision and witnessed major episodes of accretion 
and collision between discrete continental blocks, such as the 
NCC, North Qinling Block and the SCB (Chen et al., 2018; 
Dong and Santosh, 2016; Wu and Zheng, 2013a, b). According 
to available geology, geochemistry and geochronology mate-
rials, Dong and Santosh (2016) suggested that the tectonic his-
tory of the Qinling Orogen at least has gone through five stages: 
(1) The southward subduction of Mesoproterozoic ocean be-
tween the North Qinling terrane and NCC led to the collage of 
the North Qinling terrane and the NCC at ca. 1.0 Ga and re-
mained the Kuanping suture. (2) The Neoproterozoic accretion 
as represented by the widely distributed terranes and volcanic- 
sedimentary rocks. (3) Paleozoic two-stage subduction includ-
ing Early Paleozoic ocean-continent subduction constrained by 
the ophiolitic mélange, island-arc related volcanics, intrusions 
and (ultra)high-pressure and (ultra)high-temperature metamor-
phic events in the North Qinling belt, and Late Paleozoic  
continent-continent subduction (Bader et al., 2013; Wu and 
Zheng, 2013a, b; Dong et al., 2011; Meng and Zhang, 2000). (4) 
The Triassic collisional orogeny occurred between the South 
Qinling Block and SCB along the Mianlue suture (Wang et al., 
2018; Dong et al., 2011; Meng and Zhang, 2000). (5) Mesozoic 
intra-continental orogeny, including Early Jurassic differential 
tectonics, Late Jurassic to Early Cretaceous compression and 
thrusting, and Late Cretaceous to Paleogene orogen collapse 
and depression (Li N et al., 2015b; Li Y F et al., 2004). 
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The Houyaoyu granite porphyries are located in the East 
Qinling Orogen, and belong to part of the southern NCC margin 
(Fig. 1). The exposed strata are mainly composed of the Upper 
Taihua Group formed in earlier Paleoproterozoic (medium- to 
high-grade metamorphic rocks including hornblende schist, 
amphibolite gneiss) (Li N et al., 2015b; Lu et al., 2015; Xu et 
al., 2009; Diwu et al., 2007; Chen and Zhao, 1997; Hu et al., 
1988), Middle Proterozoic Xiong’er Group (mainly consisting 
of  mafic-intermediate-acid volcanic lava and fluvial to lacu-
strine facies sedimentary rocks), the Neoproterozoic Guandao-
kou Group (mainly consisting of carbonate sedimentary forma-
tion composed of dolomite), and Quaternary sediments(mainly 
consisting of loose sand and clay minerals) (Li C Y et al., 2012; 
Ye et al., 2008a, 2006; Zhang et al., 2011, 1997, 1996). The 
crystalline basement is the Taihua Group, which consists of 
intermediate- high grade metamorphic rocks, and the Xiong’er 
Group, Luanchuan Group, Guandaokou Group, and Quaternary 
sediments then overlap in this order to form the cover. 

Magmatism was fairly frequent and extensive throughout 
geological history in the East Qinling district, particularly dur-
ing the Yanshanian Stage. Numerous small intrusions with ages 
from ~158 to ~108 Ma are exposed (Mao et al., 2010) in this 
area, which are mainly composed of syenite granite porphyry, 
(biotite) monzonite granite porphyry, quartz diorite, K-feldspar 
granite porphyry (Qi et al., 2012; Hu et al., 2011; Wang et al., 
2011; Gao et al., 2010; Mao et al., 2010; Dai et al., 2009; Guo 
et al., 2009; Ye et al., 2008b; Zhang et al., 2006). These small 
intrusions supplied plenty of ore-forming materials for Mo (W) 
and Pb-Zn polymetallic mineralization during the Yanshanian 
Stage, and generated a large-scale molybdenum belt and Pb-Zn 
polymetallic deposits in eastern Qinling. Furthermore, small 
amounts of mafic rocks are exposed in this area in the form of 
batholiths, dikes, veins, and branches (Lu, 1998). 

The Houyaoyu granite porphyries were emplaced into the 
Longjiayuan Formation of the Late Proterozoic Guandaokou 
Group consisting of dolomite (Fig. 2). The Fe-Pb-Zn ore bodies 
are located in the contact belt between country rocks and the 
intrusions, and there are clear boundaries between the intru-
sions and the Fe-Pb-Zn ore bodies (Fig. 3). Thus, the emplace-
ment of the Houyaoyu granite porphyries is considered to cause 
the formation of the Houyaoyu Fe-Pb-Zn Deposit. 

 
2  SAMPLES AND ANALYTICAL METHODS 
2.1  Samples 

Thirteen rock samples with moderate alteration were col-
lected from different areas of the Houyaoyu granite porphyries, 
and two enclaves (YY-22, YY-56) in the granite intrusion (see 
Figs. 3e, 3f) were collected. The Houyaoyu granite porphyries 
and enclaves exhibit massive structures, and porphyritic tex-
tures in hand specimen. These samples were systematically 
identified via microscope and classic porphyritic textures were 
identified. The Houyaoyu granite porphyries are composed of 
quartz (20 vol.%–25 vol.%, often showing round and harbor 
shape by alteration), K-feldspar (40 vol.%–45 vol.%, often 
exhibiting kaolinization or argillization), biotite (15 vol.%, 
often exhibiting chloritization), and other minor silicate miner-
als (e.g., apatite, sphene) and opaque minerals (e.g., pyrite, 
magnetite). The phenocrysts consist of quartz, K-feldspar and 
biotite (Figs. 4c, 4d). The two enclaves are significantly differ-
ent from the Houyaoyu granite porphyries, because they consist 
of plagioclase with kaolinization, quartz, and show more severe 
alteration (Figs. 4e, 4f). 

To determine the emplacement age of the Houyaoyu gra-
nite porphyries, we collected two samples (YY-02 and YY-52) 
and performed SIMS U-Pb dating on zircons. The petrological 
characteristics of the two samples are described as follows. 

 

 

Figure 2. Simplified geological map of the Houyaoyu region. 
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ties related to individual analysis are reported at 1σ level, and 
mean ages for pooled U/Pb (and Pb/Pb) analyses are quoted 
with a 95% confidence interval. Data reduction was conducted 
using the Isoplot/Ex v. 2.49 program (Ludwig, 2001). 

 
2.3  Major and Trace Element 

All of the studied rock samples were collected from the 
Houyaoyu granite porphyries. Major oxides of the samples were 
measured using an Axios PW4400 X-ray fluorescence spectro-
meter (XRF) on fused glass beads at ALS Chemex (Guangzhou) 
Co. Ltd, and trace elements were analyzed using inductively 
coupled plasma mass spectrometry (ICP-MS) at the State Key 
Laboratory of Ore Deposit Geochemistry (SKLODG), Chinese 
Academy of Sciences (CAS), following the procedures of Qi et 
al. (2000). Instrumental drift was corrected running a reference 

standard solution after every five samples. Results show that 
analytical precisions and accuracies for most of the trace ele-
ments measured were generally better than 5%. 

 
2.4  Sr-Nd Isotope 

The chemical separation and isotopic measurement pro-
cedures were described in Zhang G W et al. (2001).Whole-rock 
Sr-Nd isotopic analyses were performed using a VG AXIOM 
multi collector-ICP-MS (MC-ICP-MS) at the Key Laboratory 
of Orogenic Belts and Crustal Evolution, Ministry of Education, 
Peking University.  

Mass fractionation corrections for Sr and Nd isotopic ra-
tios were based on the 86Sr/88Sr ratio of 0.119 4 and 146Nd/144Nd 
ratio of 0.721 9, respectively. The 87Sr/86Sr ratio of the Standard 
NBS987 and 143Nd/144Nd ratio of the Standard SHINESTU  

 

 

Figure 4. Hand specimen and microscope photos of the Houyaoyu granite porphyries. (a), (b) are hand specimen showing that they are massive structure and 

porphyritic texture; (c), (d) are photomicrograph showing that the Houyaoyu granite porphyries with classic porphyritic texture consist of quartz (Qz), 

K-feldspar (Kfs), biotite (Bt), apatite, sphene, pyrite (Py), magnetite. Furthermore, phenocrysts consist of quartz, K-feldspar and biotite, and the same is true for 

matrix composition; (e), (f) are photomicrograph from YY-22 and YY-56. 
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contents of K2O, MgO, CaO, TiO2, Y, and lower of Al2O3, Sr. 
 
3.3  Sr-Nd Isotopic Compositions 

In this study, eight samples from the Houyaoyu granite 
porphyries were analyzed to obtain their whole-rock Rb, Sr, Sm, 
Nd concentrations and Sr-Nd isotopic compositions (Table 3). 
Using results of SIMS zircon U-Pb dating for the Houyaoyu 
granite porphyries, the initial 87Sr/86Sr and εNd(t) values were 
calculated at t=131 Ma. In addition, depleted mantle Nd model 
ages (TDM) were calculated using the model of DePaolo (1991). 
Most of the Sr-Nd isotopic compositions of the Houyaoyu gra-
nite porphyries are characterized by relatively homogenous 
initial 87Sr/86Sr ratios ranging from 0.707 7 to 0.709 7, and εNd(t) 
values ranging from -9.13 to -12.32 (see Table 1 and Fig. 8), 
with corresponding two-stage depleted-mantle Nd model ages 
(T2DM ) ranging from 1.57 to 1.91 Ga (with the exception of 
two samples YY-22, YY-56). Notably, two exceptional samples 
YY-22 and YY-56 have fairly high ISr (0.734 5 and 0.747 5) and 
negative εNd(t) values (-24.26 and -26.04). 

 
4  DISCUSSION 
4.1  Petrogenesis of the Houyaoyu Granite Porphyries 

The results show that major oxides (Fe2O3, CaO, Al2O3, 
P2O5) and Sr concentrations decrease with increasing values of 
SiO2, indicating fractionation of Fe-Ti oxides, plagioclase, and 
apatite (Fig. 9). It is considered that apatite may have played 
an important role in parental magmatic evolution, as shown by 
the obvious depletion of P in the spider diagram (Fig. 7b). In 
addition, the negative Nb and Ta anomalies (Fig.7a) may be 
related to the following two occurrences: (1) separation of Ti 
containing minerals (e.g., titanite and rutile) from magma; (2) 
parental magma derived from a source depleted in Nb and Ta. 
However, as the TiO2 contents show no relationship with the 
SiO2 contents (Fig. 6b), this suggests that the Houyaoyu gra-
nite porphyries were derived from a crustal source slightly 
depleted in Nb and Ta. 

According to the nature of their protolith, granitic rocks 
have commonly been divided into I-type, S-type and M-type 
(Chappell and White, 1974). Loiselle and Wones (1979) later 
introduced A-type granite, where A stands for mildly alkaline, 
anorogenic, and anhydrous, according to the chemical compo-
sitions. In the Zr vs. TiO2 diagram (Fig. 10a), the Houyaoyu 
granite porphyries are plotted into the I-type granite field, and 
this is also supported by the P2O5 vs. SiO2 diagram (Fig. 9f). It 
should be noted, however, that due to moderate alternation, the 
Na2O contents decrease with increasing SiO2 (Fig. 6b), thereby 
causing a distortion of the A/CNK values. Therefore, the 
A/CNK values cannot be used to distinguish I-type and S-type 
granite. In contrast, Zr and Ti are immobile elements and were 
hardly affected by later alteration, thus the Zr vs. TiO2 diagram 
is reliable for classification (Hastie et al., 2007). In addition, 
the P2O5 contents slightly decrease with increasing SiO2 (Fig. 
9f), thereby showing a good trend and indicating the characte-
ristics of I-type granite (Li et al., 2007; Chappell and White, 
1992). As diagnostic peraluminous minerals such as muscovite, 
cordierite, and garnet in S-type granites (Barbarin, 1999) were 
not found in the Houyaoyu granite porphyries, we therefore 
classify the Houyaoyu granite porphyries as I-type granites. 

 

Figure 6. (a) SiO2 versus total alkali (Na2O+K2O) (TAS) (after Middle-

most, 1994); (b) K2O versus SiO2 diagram of the Houyaoyu granite por-

phyries (solid line after Peccerillo and Taylor, 1976; dashed line after 

Middlemost, 1985). 

 

 

Figure 7. Plots of primitive mantle-normalized incompatible trace-element 

and chondrite-normalized rare earth element for the Houyaoyu granite 

porphyries. Primitive mantle data are from Sun and McDonough (1989), 

and chondrite data from Boynton (1984). 
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Rocks from the Houyaoyu granite porphyries have high Sr 
(100 ppm–712 ppm, mostly >400 ppm), low Y (6.09 ppm–15.7 
ppm, <18 ppm) and Yb (0.493 ppm–1.07 ppm, <1.8 ppm), 
similar to the geochemical characteristics of adakitic rocks 
(Castillo, 2012; Richards and Kerrich, 2007; Martin et al., 2005; 
Defant and Drummond, 1990). Previous studies have revealed 
that most Late Jurassic–Early Cretaceous granites in East China 
and in the south of the NCC have characteristics of high Sr and 
low Y (Li H Y et al., 2012; Li N et al., 2012; Qi et al., 2012; 
Wang et al., 2011; Gao et al., 2010; Dai et al., 2009; Ye et al., 
2008a; Zhang et al., 2006; Zhai, 2004). 

Generally, adakitic rocks are formed via the following 
three mechanisms: (1) partial melting of oceanic slab in a sub-
duction setting (He et al., 2014; Gutscher et al., 2000; Yogod-
zinski and Kelemen, 1998; Defant and Drummond, 1990); (2) 
basaltic magmas experiencing complex fractional crystalliza-
tion processes (Dessimoz et al., 2012; Chiaradia, 2009; Li J W 
et al., 2009; Richards and Kerrich, 2007; Macpherson et al., 
2006); (3) partial melting of the lower continental crust in rela-
tion to delamination or crustal thickening (Yuan et al., 2010; 
Huang et al., 2008; Wang et al., 2007; Gao et al., 2004; Hou et 
al., 2004; Muir et al., 1995; Atherton and Petford, 1993; Kay 
and Kay, 1993). Previous studies suggested that the Qinling 
Orogen experienced a number of continent-continent collision 
events from the Middle Paleozoic to the Late Triassic, which 
was accomplished at 220–240 Ma due to a collision between 
the SCB and NCC (Wu et al., 2013a; Zhao et al., 2013; Dong et 
al., 2011; Meng and Zhang, 2000, 1999; Zhang et al., 1997, 
1996; Li S G et al., 1993). However, as the formation of the 
Houyaoyu granite porphyries is ca. 131 Ma, there is no rela-
tionship between their formation and the collision events for 
the Qinling Orogen. The generation of the Houyaoyu granite 
porphyries is therefore not associated with partial melting of 
oceanic slab in a subduction setting, and this is also supported 
by the lack of contemporaneous mafic rocks (e.g., basalts, lam-
prophyres, diabases, gabbros) in East Qinling. In addition, there 
is no positive correlation between the SiO2 and Sr/Y and La/Yb 
ratios (Fig. 11), and the diagram of La-La/Sm (Fig. 10b) shows 
that the parental magma of the Houyaoyu granite porphyries 
was generated by a partial melting process. Therefore, the 
Houyaoyu granite porphyries could not have resulted from the 
fractional crystallization of basaltic magma (Wang et al., 2014). 
Generally, adakitic rocks formed by crustal delamination have 
high MgO (Mg#>50), Cr (>30 ppm), and Ni (>20 ppm) (Ri-
chards and Kerrich, 2007), thus the Houyaoyu granite porphy-
ries were not formed by a delaminated lower continental crust. 
Furthermore, the Houyaoyu granite porphyries are characte-
rized by depletion of HREEs, Y, and negative εNd(t) values 
(-9.13– -12.3), which could be well explained by the partial 
melting of an over-thickened lower continental crust (generally 
having a depth of >50 km, ~15 kbar) (Wang et al., 2014; Hou et 
al., 2013, 2004). Finally, the South China Block was fully con-
nected to the North China Plate by the Late Triassic, implying 
that there is no direct relationship between the formation of 
these small intrusions and the closure of the North Qinling 
Ocean. 

On the chondrite-normalized REE diagram (Fig. 7a), the 
Houyaoyu granite porphyries are characterized by no (or  
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Figure 8. εNd(t) vs. ISr diagram of the Houyaoyu granite porphyries. Data of other intrusions in East Qinling include the Wenyu (Zhao et al., 2012), Niang-

niangshan (Zhao et al., 2012), Huashan (Ni et al., 2009), Laoniushan (Ni et al., 2009; Zhang et al., 2006), Heyu (Zhang et al., 2006), Lantian intrusions (Wang 

et al., 2011; Zhang et al., 2006), Xiong’er Group (Cui et al., 2011; He et al., 2010). The Taihua Group (Ni et al., 2009; Xu et al., 2009) is used to represent lower 

continental crust of the NCC, and MORB (Jacobsen and Wasserburg, 1979) is used to represent primitive mantle. 

 
weakly negative) Eu anomalies, with δEu varying from 0.69 to 
0.98, which suggests that almost no plagioclase fractionation 
occurred in the evolutional process of parental magma, or no 
plagioclase served as a residual component during intracrustal 
partial melting. In addition, high (La/Yb)N values indicate that 
parental magma experienced a long evolutionary time, or stand 
for the geochemical composition of the protolith. Figure 7b 
shows the negative anomalies for P, suggesting that apatite 
played an important role in crystal fractionation, and this is also 
evident from the negative correlation between P2O5 and SiO2. 
Because there are no significant trends between TiO2, Nb, Ta, 
and SiO2, it is suggested that the negative anomalies for Nb, Ta, 
and Ti (Fig. 7b) are inherited from a crustal source, which is 
also supported by the strongly positive Pb anomalies. 

The Sr-Nd isotopic compositions of the Houyaoyu granite 
porphyries are divided into two obvious groups (Table 3). One 
group with medium initial 87Sr/86Sr ratios (0.707 7–0.709 7) 
and negative εNd(t) values (-9.13– -12.3) represents the compo-
sition of the Houyaoyu granite porphyries and implies that they 
originated from the lower crust. However, the Sr-Nd isotopic 
characteristics are different from those of the lower crust of the 
NCC, indicating that mantle materials were involved in the 
generation of parental magma. The two enclave samples have 
high initial 87Sr/86Sr ratios (0.734 5 and 0.747 5) and more neg-
ative εNd(t) values (-24.26 and -26.04), similar to those of the 
ancient lower crust of the NCC.  

We summarized Sr-Nd isotopic data for another six intru-
sions in East Qinling, and plotted their εNd(t) and initial 
87Sr/86Sr ratios (ISr) values in Fig. 8. In the εNd(t) vs. ISr diagram, 

most of the data for the intrusions (except YY-22 and YY-56) in 
East Qinling are plotted in an area between MORB 
(representing primitive mantle ) and the Xiong’er Group and 
Taihua Group (representing lower continental crust of NCC), 
suggesting a mixing source of mantle and crust. In addition, 
low MgO, Ni, and V concentrations also indicate the presence 
of minor mantle materials in the source. The ancient two-stage 
depleted- mantle Nd model ages (T2DM) from 1.57 to 1.91 Ga, 
overlapping the ages of two inherited zircons in this study, 
suggest that the Houyaoyu granite porphyries might be derived 
from old lower continental crust. 

In summary, we suggest that the Houyaoyu granite por-
phyries originated from a crust-mantle interaction, mainly in 
relation to an ancient continental crust, with minor involvement 
of mantle-derived components. This interpretation is also be 
supported by the discovery of enclaves from the lower crust 
and the old U-Pb zircon ages. 

 
4.2  Timing and Tectonic Setting of Magmatic Events in 
East Qinling 

Our SIMS zircon U-Pb dating results show that the 
Houyaoyu granite porphyries formed at about 131 Ma (in the 
Early Cretaceous stage in geologic time scale); the Early Cre-
taceous Age is consistent with previous results from 
LA-ICP-MS zircon U-Pb dating (Hu et al., 2010), indicating 
that Pb-Zn polymetallic mineralization began at that time. As 
the combining of the North China Craton (NCC) and the South 
China Block (SCB) was completed before 200 Ma (Li N et al., 
2015a; Wu et al., 2013a; Zhao et al., 2013; Dong et al., 2012, 
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2011; Liu et al., 2011; Meng and Zhang, 2000, 1999; Zhang et 
al., 1997, 1996), the formation of the Houyaoyu granite por-
phyries, therefore, has no relationship with the collision of the 

Qinling Orogen. The Qinling Orogen was subsequently in-
volved in a transition from compression to extension, which is 
evidenced by many Mesozoic extensional structures (including  

 

 

Figure 9. Major and trace elemental compositions versus SiO2 diagrams. 
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metamorphic core complexes such as the Xiaoqinling, Xiao-
shan, Xiong’ershan, and Lishan), and detachment faults de-
veloped during 135–123 Ma in the internal NCC (Lin et al., 
2008; Yang et al., 2007; Liu et al., 2005; Zhang J J et al., 2003; 
Zhang and Li, 1998; Shi et al., 1993). In fact, the drifting Iza-
nagi Plate turned to a roughly parallel direction to the Eurasian 
eastern continental margin after 135 Ma, rather than subduct-
ing beneath the continent (Goldfarb et al., 2007; Maruyama et 
al., 1997). This means that the Izanagi Plate had a reduced 
tectonic impact on the NCC after 135 Ma, and this is the main 
cause of the transition in the tectonic regime from compres-
sion to extension in the East Qinling district. Mantle materials 
began to upwell in an extensional tectonic environment and 
heated the over-thickened lower continental crust of the NCC, 
which led to partial melting of the crust. Lithospheric de-
struction of the North China Craton was simultaneously in-
itiated; this caused numerous magmatic events that are con-
firmed by the large number of Mesozoic felsic intrusions in 
East Qinling. 

On the basis of the above demonstration, we assumed that 
the Houyaoyu granite porphyries were formed in an extensional 
tectonic environment related to the lithospheric destruction of 
the North China Craton. The partial melting of the ancient low-
er continental crust of the NCC and the involvement of minor 
mantle materials generated the parental magma during mantle 
under plating, and crust-mantle interaction took place during 
the above processes. It is thus considered that Mo and Pb-Zn 
mineralization occurred in the Early Cretaceous in the south of 
NCC simultaneously with the destruction of the North China 
Craton (Bao et al., 2014; Mao et al., 2011). 

 

 

4.3  Relationship between Magmatic Events with Minera-
lization in East Qinling 

Numerous previous studies of the petrology, geochemistry,  
 

 

Figure 10. Plots of Zr versus TiO2 and La versus La/Sm diagram of the 

Houyaoyu granite porphyries.  

 

Figure 11. SiO2 versus trace elements diagram of the Houyaoyu granite porphyries. 
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and geochronology for the Yanshanian intrusions in East Qin- 
ling have revealed two main magmatic events that occurred in 
the Late Jurassic–Early Cretaceous (158–141 Ma) and the Ear-
ly Cretaceous (135–108 Ma), respectively (Li N et al., 2012; Qi 
et al., 2012; Hu et al., 2011; Wang et al., 2011; Gao et al., 2010; 
Mao et al., 2010; Dai et al., 2009; Guo et al., 2009; Ye et al., 
2006; Zhang et al., 2006). The magmatism supplied such a 
large quantity of materials that formed a large-scale Mo mine-
ralization belt and several Pb-Zn polymetallic deposits; all the 
Mo ore deposits and most of the Pb-Zn polymetallic deposits 
are related to the Yanshanian felsic intrusions. This proposal is 
also supported by the stable isotope characteristics (C, H, O, S) 
of vein minerals and Pb, Mo isotopes of ore minerals (Qi et al., 
2012; Gao et al., 2010; Dai et al., 2009; Guo et al., 2009; Ye et 
al., 2006). The Houyaoyu intrusion is one of these intrusions in 
East Qinling, and it is closely related to the formation of Pb-Zn 
polymetallic deposits. Thus, its genesis is an important implica-
tion for the tectonic setting of the Early Cretaceous magmatic 
events and the relationship between magmatic events with mi-
neralization in East Qinling District. Mao et al. (2011) summa-
rized the characteristics and tectonic settings of Mesozoic mo-
lybdenum deposits in the East Qinling-Dabie orogenic belt, and 
found that these Mo deposits are genetically, spatially and 
temporally associated with Mesozoic intrusions. In fact, many 
vein type Pb-Zn-Ag deposits are located in the surrounding 
porphyry or porphyry-skarn Mo deposits, suggesting that they 
belong to the same ore system. Therefore, porphyry stock 
works and Pb-Zn polymetallic veins can be used as vectors for 
further prospecting in East Qinling Orogen. 
 
5  CONCLUSIONS 

(1) The Houyaoyu granite porphyries are I-type granites 
and have adakitic characteristics. The SIMS zircon U-Pb ages 
of the Houyaoyu granite porphyries are ~131 and ~133 Ma, 
suggesting that intense magmatic activities occurred during the 
Early Cretaceous in the south of the NCC. 

(2) Trace elemental and Sr-Nd isotopic compositions in-
dicate that the Houyaoyu granite porphyries were mainly de-
rived from ancient lower continental crust, with minor in-
volvement of mantle-derived components. The resultant crust- 
mantle interaction provided large amounts of ore-forming ma-
terials for Mo, Pb, and Zn mineralization in East Qinling. 

(3) It is thus proposed that the Houyaoyu granite porphy-
ries formed in an extensional tectonic setting related to the 
lithospheric destruction of the North China Craton. 
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