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Abstract

It is necessary to build a proper theoretical method that can precisely describe isotope fractionation processes under super-
cold (<200 K) conditions, because there have been many isotopic data obtained in our solar system that are related to such
processes. However, current methods of isotope fractionation calculation, i.e., the Bigeleisen-Mayer equation and its higher-
order energy corrections, may not be applicable to super-cold conditions. Here, we have checked important assumptions and
higher-order corrections that can affect isotope fractionations of gas-phase molecules under super-cold conditions and devel-
oped a new theoretical method for calculating equilibrium isotope fractionation factors. Compared with previous works, we
have added three new corrections into our calculation, i.e., nuclear-spin weights for quantum mechanical rotation, correction
for Born-Oppenheimer approximation (BOA), and inversion splitting effect for non-planar molecules such as NH3. We fur-
ther examined gaseous molecules of geochemistry and cosmochemistry relevance, e.g., H2, HF, HCl, H2O, H2S, HCHO, NH3,
CH4 and their deuterated isotopologues. We found that the correction for BOA, which was rarely considered in previous stud-
ies, is important for those gaseous molecules under super-cold conditions. In case of D/H, 13C/12C and 18O/16O exchanges
among organic molecules, BOA correction cannot be ignored even at ambient or higher temperature conditions. Most isotope
fractionation trends at super-cold conditions reported here are quite different from their counterparts at ambient or higher
temperature conditions. The method proposed here will extend our capability in interpreting equilibrium isotope fractiona-
tions to super-cold conditions in the solar system.
� 2018 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Urey (1947) and Bigeleisen and Mayer (1947) showed
how to calculate equilibrium isotope fractionation factors
with sufficient accuracy. Their methods were later referred
to as the Urey model or the Bigeleisen-Mayer equation
(hereafter B-M equation). The B-M equation can success-
fully predict equilibrium isotope fractionations at ambient
and higher temperatures by only employing harmonic
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vibration frequencies of studied compounds. However, B-
M equation has adopted a few approximations, notably
those that are not adequate for super-cold conditions
(<200 K) or H/D exchange reactions. With the progress
in planetary sciences and space exploration, more and more
isotopic data have been obtained for systems under extre-
mely low temperatures (e.g., Pinto et al., 1986; Eberhardt
et al., 1987; Robert et al., 2000; Cordier et al., 2008;
Robert, 2010; Nixon et al., 2012; Webster et al., 2013;
Altwegg et al., 2014). It is therefore necessary to examine
and revise the approximations in B-M equation when it
comes to super-cold conditions.
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There are many corrections that have been proposed to
improve the B-M equation since 1947, e.g., vibrational
anharmonicity (including theG0 term), quantummechanical
rotation, centrifugal distortion, vibration–rotation coupling,
inversion splitting, and hindered internal rotator (e.g., Urey,
1947; Bigeleisen and Mayer, 1947; Wolfsberg, 1969a, 1969b;
Wolfsberg et al., 1970; Born and Wolfsberg, 1972; Richet
et al., 1977; Liu et al., 2010). All these corrections are related
to translational, vibrational and rotational energy differences
between isotopologues. In addition, the electronic energy dif-
ference has also been found to bring minor contributions to
isotope fractionation. For example, Kleinman and
Wolfsberg (1973) firstly pointed out the importance of elec-
tronic energy difference beyond the Born-Oppenheimer
approximation (BOA) for isotopic exchange reactions. They
found that this energy differencewould cause significant frac-
tionations for the HX + HD = DX + H2 isotope exchange
reaction from 1.029 (X = Li) to 1.101 (X = B) at 300 K.
And this energy correction for other systems has also been
evaluated, e.g., HCl (Postma et al., 1988); H + H2 reaction
(Mielke et al., 2005); CH4 + C2H reaction (Nixon et al.,
2012); N2 (Chakraborty et al., 2014); and Li2, LiK, LiRb,
Sr2, Yb2 (Lutz and Hutson, 2016). In 1989, another elec-
tronic energy isotope effect, the nuclear field shift or the
nuclear volume effect (NVE), which is the electronic energy
difference caused by different volumes and shapes of heavy
metal isotopes was discovered (Fujii et al., 1989). Since then,
many works have investigated the NVE both theoretically
and experimentally (e.g., Bigeleisen, 1996; Nomura et al.,
1996; Schauble, 2007, 2013; Fujii et al., 2009; Yang and
Liu, 2015, 2016). In addition, nuclear-spin induced hyperfine
splitting or symmetric splitting was found to cause minor
fractionations for very heavy atoms (Bigeleisen, 1996). How-
ever, all these mentioned corrections on the B-M equation
have only been examined for systems at >200 K conditions.
The applicability of these corrections under super-cold con-
ditions was entirely unknown.

Here we firstly reevaluate the approximations used in
the B-M equation to test if they should be included into
the calculation for super-cold conditions. Then, following
the works of Richet et al. (1977) and Liu et al. (2010), we
develop a method to calculate equilibrium isotope fraction-
ation factors under super-cold conditions. This theoretical
method includes important treatments on higher-level
energy terms, such as vibrational anharmonicity (including
G0 term), quantum mechanical rotation (including nuclear-
spin weights for molecules with different symmetries except
the asymmetric-tops), centrifugal distortion, vibration-
rotational coupling, inversion splitting (for NH3 and its iso-
topologues), and the energy correction on BOA. Compared
with previous studies, the nuclear-spin weights for quantum
mechanical rotation, the correction on BOA, and the inver-
sion splitting effect are three new corrections added here.
We could but did not include the NVE into our calculation
because NVE is significant only for heavy elements (gener-
ally Z > 40) and our systems are all light elements (e.g., H,
C, N, O and S).

After systematic evaluation, we find that departures
from the assumptions underlying the BOA introduce signif-
icant corrections to the systems we studied.
2. THEORY

2.1. The Urey model or the B-M equation

The B-M equation or the Urey model (Bigeleisen and
Mayer, 1947; Urey, 1947) is the basis of calculating equilib-
rium isotope fractionation factors, and can be derived as
follows.

For an isotopic exchange reaction as

AXL þ BXH ¼ AXH þ BXL ð1Þ
where XL and XH denotes the light and heavy isotopes,
respectively. Under statistical mechanical treatments, its
equilibrium constant Keq can be expressed by the ratio of
partition functions:

Keq ¼ AXH½ �
AXL½ � =

BXH½ �
BXL½ � ¼

QAXH

QAXL

=
QBXH

QBXL

¼ QtransQrotQvibð ÞAXH

QtransQrotQvibð ÞAXL

=
QtransQrotQvibð ÞBXH

QtransQrotQvibð ÞBXL

ð2Þ

The terms Qtrans, Qrot and Qvib are the translational,
rotational and vibrational partition functions, respectively.
A partition function Q can be defined as

Q ¼
X
i

giexp �
Ei

kBT

� �
ð3Þ

where Ei is the energy of the ith energy level with a degen-
eracy of gi, kB is the Boltzmann constant and T is the tem-
perature in Kelvin.

Urey (1947) and Bigeleisen and Mayer (1947) used the
harmonic oscillator and rigid rotator approximations to
describe the motion of a molecule and ignored the elec-
tronic energy difference and other quantum effects for sim-
plicity. Under these approximations, the expressions of
Qtrans, Qrot and Qvib can then be easily given as follows (take
a non-linear polyatomic molecule contains N atoms as
example)

Qtrans ¼ V
2pMkBT

h2

� �3
2

ð4Þ

Qrot ¼
p

1
2 8p2kBTð Þ32 IAIBICð Þ32

rh3
ð5Þ

Qvib ¼
Y3N�6
i¼1

exp � ui
2

� �
1� exp �uið Þ ui ¼ hcxi

kBT
ð6Þ

where V is volume, M is the molecular mass, IA, IB and IC
are the moment of inertia around axis A, B and C of rota-
tion, h is the Planck constant, c is the speed of light in vac-
uum, r is the symmetry number (the number of different
but indistinguishable arrangements of a molecule; e.g., r
(H2) = 2, r(HD) = 1, r(H2O) = 2 and r(CH4) = 12) of the
molecule and x is the harmonic vibration frequency.

Bigeleisen and Mayer (1947) additionally employed the
Teller-Redlich theorem or the isotope product rule
(Redlich, 1935; Wilson et al., 1955) given by:

IAIBICð Þ12AXH

IAIBICð Þ12AXL

MAXH

MAXL

� �3
2

¼ mH

mL

� �3n
2 Y3N�6

i¼1

ui;AXH

ui;AXL

ð7Þ



Y. Zhang, Y. Liu /Geochimica et Cosmochimica Acta 238 (2018) 123–149 125
where n is the number of X atoms been substituted (in this
study, n = 1) and mH, mL is the mass of the XH and XL

atoms. The B-M equation is thus given by inserting Eqs.
(4)-(6) into Eq. (2) and applying Eq. (7):

QAXH

QAXL

¼ rAXL

rAXH

mH

mL

� �3
2

�
Y3N�6
i¼1

ui;AXH

ui;AXL

exp � ui;AXH
2

� �
exp � ui;AXL

2

� � 1� exp �ui;AXLð Þ
1� exp �ui;AXHð Þ

" #
ð8Þ

where the
rAXH
rAXL

QAXH
QAXL

= mH
mL

� �3
2

term is called the reduced

partition function ratio (RPFR) of the isotopologue pair
AXH/AXL (Bigeleisen and Mayer, 1947). Thus, the RPFR
can be expressed as

RPFR AXH=AXLð Þ ¼
Y3N�6
i¼1

ui;AXH

ui;AXL

exp � ui;AXH
2

� �
exp � ui;AXL

2

� �
� 1� exp �ui;AXLð Þ

1� exp �ui;AXHð Þ ð9Þ

The equilibrium fractionation factor a is equal to Keq for
a single-isotope-substitution reaction between AX and BX.
At the B-M equation theoretical treatment level, a is equal
to the ratio of two RPFRs:

Keq ¼ aAX�BX ¼ RPFR AXH=AXLð Þ
RPFR BXH=BXLð Þ ð10Þ

Theorists often use the b factor (Schauble, 2004), which
is a special isotope fractionation factor between a com-
pound and ideal mono-atomic gas of the interested isotope
system, e.g., between water and mono-atomic O gas if O
isotope is the interested isotope system. The b factor shows
the ability of heavy isotope enrichment of a certain com-
pound. The relation between b factor and fractionation fac-
tor a is

bAX ¼ aAX�X ð11Þ
Therefore, the isotope fractionation factor a between

AX and BX is the ratio of two b factors (Note that only
at the B-M equation treatment level, b factor is equal to
RPFR.):

aAX�BX ¼ bAX

bBX
ð12Þ
2.2. Approximations or assumptions used in the B-M

equation

Here we review the assumptions that underlie the B-M
equation and check whether they are still valid under low
temperature conditions or not. The approximations or
assumptions used in the B-M equation are:

(a) The gaseous systems must be ideal so that the
pressure-volume work difference can be ignored.

(b) The systems are dilute and particles can be distin-
guished from one another. As a result, the transla-
tional motions of the molecule are assumed to obey
the Maxwell-Boltzmann-Statistics (MBS). To check
the validity of this assumption, we can use the com-

mon threshold N
V

h2

2pMkBT

� �3
2

<< 1, where N and V are

the number of molecules and the volume of the sys-
tem, respectively. After simple calculation, we find
that all the gaseous molecules used in this study per-
fectly satisfy this requirement (more details can be
find in Supplementary file, Section S1).

(c) Qtrans can be calculated with an analytic expression
rather than direct summation. The translational
motion of a molecule can be described by 3
quantum number nx, ny and nz after solving the 3-
dimensional Schrödinger equation in a cubic box
with an edge of l. The energy levels can be expressed
as follows:

E nx; ny ; nz
� � ¼ h2

8Ml2
nx2 þ ny2 þ nz2
� � ð13Þ
When the system is at ambient conditions, the interval
between two neighboring translational energy states is very
small. The triple summation hence can be approximated
into a product of three independent integrations:
Qtrans ¼
Pþ1
nx

Pþ1
ny

Pþ1
nz

exp � h2

8Ml2kBT
nx2 þ ny2 þ nz2
� �h i

� Rþ1
0

exp � h2n2dn
8Ml2kBT

� �� 	3
¼ l3 2pMkBT

h2

� �3
2

¼ 2pMkBT
h2

� �3
2

V ð14Þ
However, when the temperature decreases, the summa-
tion interval increases exponentially. Therefore, we need
to check whether it is reasonable to use the integration
treatment under super-cold conditions or not. Fortunately,

due to the extremely small value of h2

8Ml2kBT
for ideal gases

under super-cold conditions, i.e., the common average
value is �10�16, when M is 2 g mol�1 (corresponding to
3.32 � 10�27 kg), T is 20 K and l is 1 cm. It is still appropri-
ate for using the integration approximation treatment.

(d) Rotational motion of a molecule is rigid and Qrot can
be calculated by integration rather than summation.
For most molecules, their rotational temperatures

(H ¼ h2

8p2IkB
, generally < 10 K) can be ignored when

compared with the system temperature T (HT ! 0),

therefore Qrot can be easily calculated by (such as
for a diatomic molecule):

Qrot ¼
Pþ1
J¼0

2J þ 1ð Þexp � H
T J J þ 1ð Þ
 �

� Rþ1
0

exp � H
T x

� �
dx ¼ T

H

ð15Þ

Here the (2J + 1) term in front of the exponent is the
degeneracy of the Jth rotational energy level. However,
when H is very high or the system temperature is low, we
cannot directly use this approximation to calculate Qrot,
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especially for H2 (e.g., Bigeleisen and Mayer, 1947; Richet
et al., 1977). In addition, the nuclear-spin effect due to the
nuclear-spin statistics will become significant at low temper-
atures (e.g., Fox, 1970; McDowell, 1987, 1988, 1990;
Arrighini and Guidotti, 1995), and the effects of centrifugal
distortion and vibration-rotational coupling should be con-
sidered, too. Although it is often believed that the later two
effects are important at high temperatures (Richet et al.,
1977; Liu et al., 2010), we still need to check them at low
temperatures to ensure whether they can be safely ruled
out or not. Therefore, the calculation method of Qrot should
be revised under super-cold conditions.

(e) Harmonic oscillator approximation. Vibrational
anharmonicity correction has been shown to be very
important for calculating isotope fractionations by
many studies (e.g., Wolfsberg, 1969a, 1969b;
Wolfsberg et al., 1970; Born and Wolfsberg, 1972;
Richet et al., 1977; Bigeleisen, 1996; Liu et al.,
2010). Hence it is important to take this correction
into account.

(f) The Born-Oppenheimer approximation (BOA). The
BOA assumes that the motion of electron and nuclei
of a molecule can be treated independently (actually
they are coupled), therefore the electronic energy of
a molecule and all its isotopologues are exactly the
same. Actually, when we consider the electronic
energy of a molecule beyond the BOA, the coupling
between the motion of electrons and nuclei must be
included, which corresponds to an energy correction
for the BOA. As early as in 1973, researchers had
pointed out that the energy corrections for the
BOA had unexpected large effect for H/D isotope
fractionation factors even at 300 K (Kleinman and
Wolfsberg, 1973). Bigeleisen (1996) also suggested
the necessity of considering this effect. However, this
correction has not been seriously considered by most
of studies due to its difficulty of computation. There-
fore, this correction should be systematically checked
for both equilibrium and kinetic isotope fractiona-
tion processes.

2.3. Quantum mechanical rotation with nuclear-spin weights

for a rigid rotator

In the effort to re-derive a framework for describing iso-
tope fractionation factors under super-cold conditions, we
will begin with describing a comprehensive way to calculate
the Qrot of a molecule.

Typically, a molecule is regarded as a rigid rotator and
its Qrot can be calculated using Eq. (5) or Eq. (15). How-
ever, at low temperatures, the interval between two neigh-
boring rotational energy states is too wide to use the
integration approximation. A direct summation method
must be employed. However, even direct summation cannot
give the precise value of Qrot at low temperatures due to the
nuclear-spin statistics restrictions (e.g., Herzberg, 1945;
Fox, 1970; McDowell, 1987, 1988, 1990). For a molecule
with a specific symmetry, when two of its identical atoms
are interchanged, its wavefunction must satisfy interchange
symmetry restrictions, i.e., its wavefunction must be anti-
symmetric or symmetric, as a result of Pauli exclusion the-
orem. This restriction leads to different nuclear-spin weights
for the rotational energy levels so that the calculated Qrot

will significantly deviates from the typical one. Previous
studies showed that this deviation became significant at
low temperatures and rapidly vanished as the temperature
increasing (e.g., Fox, 1970; McDowell, 1987, 1988, 1990).
Therefore, precise Qrot must be calculated with the consid-
eration of nuclear-spin weights under super-cold condi-
tions. In addition, all spin isomers of the molecule must
also be in thermodynamic equilibrium to guarantee the
use of nuclear-spin weights. The disequilibrium issue will
be simply discussed in Section 5.6.

Because different symmetries of molecule will lead to dif-
ferent nuclear-spin weights, we separate them into 4 types
according to their symmetry and three rotational constants
along the principal rotation axis:

(1) Linear molecules (including diatomic molecules)

If without a center of symmetry (e.g., HD, HCN), all
nuclear spin weights are the same and Qrot can be directly
summated using Eq. (15). If with a center of symmetry
(e.g., H2, CO2), there are different nuclear spin weights
and Qrot should be directly summed with such weights.

We denote a linear molecule with a center of symme-
try as L-L (e.g., H2, C2H2) or L-X-L (e.g., CO2), which
L is one of the two identical ligands or atoms. Thus the
nuclear-spin weights of each rotational level can be writ-
ten as

J ¼ even :
1

2
IðI � jÞ ð16Þ

J ¼ odd :
1

2
IðI þ jÞ ð17Þ

where J is the rotation quantum number (0, 1, 2, 3. . .), I is
the total nuclear-spin multiplicity of ligand L and it equals
to the product of the nuclear-spin multiplicity of all atoms
in L. The nuclear-spin multiplicity of an atom is 2IX + 1,
and IX is the nuclear spin of atom X. If the sum of nuclear
spin for all atoms in ligand L is half-integer (1/2, 3/2, 5/2,
7/2. . .), then the j is �1, i.e., H2. If the sum is an integer
(0, 1, 2, 3. . .), then j is +1, i.e., D2 or CO2 (Herzberg,
1945; McDowell, 1988; Arrighini and Guidotti, 1995).
Therefore, the complete expression of Qrot is

Qrot ¼ 1
2
IðI þ jÞ Pþ1

J¼0;2;4:::
ð2J þ 1Þexp �JðJ þ 1Þ hcBkBT

h i
þ 1

2
IðI � jÞ Pþ1

J¼1;3;5:::
ð2J þ 1Þexp �JðJ þ 1Þ hcBkBT

h i ð18Þ

where B is the rotational constant defined as B ¼ h
8p2cIB

,

which is one of the two identical rotational constants for a
linear molecule. To avoid confusion when calculating the
Qrot ratio due to the symmetry number and nuclear spin
multiplicity, the Qrot must be normalized. Taking the H2

and D2 as examples, their nuclear spin weights are 1, 3
and 6, 3 for the even and odd rotational energy levels, which
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correspond to a total multiplicity of 4 and 9. As a result, the
Qrot of D2 will be scaled by a factor of 2.25 (9/4) relative to
theQrot of H2 if we directly use the Eq. (18) without normal-
ization, which causes unnecessary confusion in the calcula-
tion of the final Qrot ratio. It is the reason why the Qrot

including the nuclear spin weights must be normalized. Here
we import the normalization factor 1/N that equals r

I2
for lin-

ear molecules we discussed here, and the denominator is the
sum of all nuclear-spin weights, which equals I2 for a linear
molecule we discussed here. For example, for H2, D2 and
CO2, 1/N equals to 1/2, 2/9 and 2, respectively.

(2) Spherical top molecules

For a spherical top molecule like methane (CH4), if we
don’t take the nuclear-spin effects into account, we can cal-
culate its Qrot by using the following formula:

Qrot ¼
1

12

Xþ1
J¼0
ð2J þ 1Þ2exp �JðJ þ 1Þ hcB

kBT

� 	
ð19Þ

where spherical-tops have a (2J + 1)2 rather than (2J + 1)
degeneracy for each energy level, and 12 is the symmetry
number.

The nuclear-spin weights of a spherical top molecule will
become much more complicated than the linear molecules
due to its high symmetry. Fox (1970) and McDowell
(1987) evaluated the nuclear-spin weights for CH4 at low
temperatures. Their formula can be summarized as

Qrot ¼
2IH þ 1ð Þ4

12

Xþ1
J¼0
ð2J þ 1Þ2exp �JðJ þ 1Þ hcB

kBT

� 	

þ 2IH þ 1ð Þ2
4

Xþ1
J¼0
ð�1ÞJ ð2J þ 1Þexp �JðJ þ 1Þ hcB

kBT

� 	

þ 4 2IH þ 1ð Þ2
3
ffiffiffi
3
p

Xþ1
J¼0
ð2J þ 1Þ sin

ð2J þ 1Þp
3

� 	
exp �JðJ þ 1Þ hcB

kBT

� 	
ð20Þ

where IH is the nuclear spin of H atom, which is 1/2. Also,
the normalization factor 1/N for a methane-like molecule
(XY4) equals

r
2IYþ1ð Þ4, which is 3/4 (= 12/16) for CH4 and

4/27 (= 12/81) for CD4.

(3) Symmetric top molecules

For a symmetric top molecule like NH3 or CH3D, they
can be described as WX3 or WXY3, and they exhibit two
sub-types of symmetries. One is the prolate top and the
other is the oblate top, which differs in their rotational con-
stants. If their rotational constants A, B and C satisfy the
conditions of B = C and A > B, then it is a prolate top
(such as CH3D); If their rotational constants satisfy A =
B and B > C, then it is an oblate top (such as NH3). The
Qrot of a prolate top molecule can be calculated without
nuclear-spin weights by

Qrot ¼
Xþ1
J¼0
ð2J þ 1Þexp �JðJ þ 1Þ hcB

kBT

� 	

�
XJ
K¼�J

exp � hcðA� BÞ
kBT

K2

� 	
ð21Þ
If it is for oblate tops, A should be replaced by C in the
above equation (McDowell, 1990).

If with the nuclear-spin weights, Qrot can be calculated
by

Qrot ¼
Xþ1
J¼0
ð2J þ 1Þexp �JðJ þ 1Þ hcB

kBT

� 	

�
XJ
K¼�J

gðKÞexp � hcðA� BÞ
kBT

K2

� 	
ð22Þ

where g(K) is

gðKÞ ¼ ð2I þ 1Þ3
3

1þ 2

ð2I þ 1Þ2 cos
2pK
3

� �" #
ð23Þ

where I is the nuclear spin of one of the three identical

atoms and the normalization factor 1/N equals to 3
ð2Iþ1Þ3,

which is 3/8 for NH3 and CH3D.

(4) Asymmetric top molecules

The Qrot of an asymmetric-top molecule with the
nuclear-spin weights can be calculated by the following
formula:

Qrot ¼
Xþ1

J ;Ka ;Kc

ð2J þ 1ÞgðKa;KcÞexp �EðJ ;Ka;KcÞ
kBT

� 	
ð24Þ

However, the exact analytic expression of E(J, Ka, Kc) is
unknown, which means it is impossible for us to directly
calculate Qrot except solving the rotational Hamiltonian
for each J-level individually through numerical method
(Dennison and Hecht, 1962). So a precise Qrot must be cal-
culated by direct summing up thousands of the rotational
energy levels measured by experiments or calculated by
high-accuracy quantum calculations. Fortunately, Watson
(1988) derived a high-temperature asymptotic formula,
which has been tested to be accurate enough and compara-
ble with the precise value by direct summing of the experi-
mental measures within 0.5%.

We used H2
16O, HD16O and H2

32S for the testing. H2
16O

and H2
32S have a C2 rotating axis which means their two

identical H atoms must satisfy the interchange symmetry
restriction. H2

16O and H2
32S hence have the same nuclear-

spin weights, which are 3 and 1 when the rotational quan-
tum number (Ka + Kc) is odd or even (Tennyson et al.,
2001). Then the accurate Qrot for H2

16O or H2
32S can be cal-

culated using the measured rotational lines at its ground
vibrational state:

QrotðH2OÞ ¼ 3
2

Pþ1
KaþKc¼ odd

ð2J þ 1Þexp � EðJ ;Ka ;KcÞ
kBT

h i
þ 1

2

Pþ1
KaþKc¼ even

ð2J þ 1Þexp � EðJ ;Ka ;KcÞ
kBT

h i ð25Þ

where 1/2 is for normalization.
For HDO, there are no identical atoms, meaning all the

nuclear-spin weights are the same and its Qrot can be directly
summed. For H2O, HDO and H2S, the contributions of the
rotational lines at excited vibrational states can be approxi-

mated using the equation exp � hcvmin

kBT

� �
where the vmin is the



128 Y. Zhang, Y. Liu /Geochimica et Cosmochimica Acta 238 (2018) 123–149
smallest vibrational fundamental. After a simple calculation,
this contribution is very small and can be safely ignored
(H2O: 0.05%; HDO: 0.13%; H2S: 0.32%; T = 300 K).

The following equation is the asymptotic formula for
calculating Qrot without considering nuclear-spin weights
(Watson, 1988):

Qrot ¼
p
abc

� �1
2

ef 1ð1þ f 2 þ f 3Þ ð26Þ

where

f 1 ¼
1

12
2
X

a�
X ab

c

� 	
ð27Þ

f 2 ¼
1

90

X abðc� aÞðc� bÞ
c2

ð28Þ

f 3¼
1

2835

�
Xðc�aÞðc�bÞ

c3
ða�bÞ2c2þ4ðaþbÞabc�8a2b2
h i

ð29Þ
and a, b and c are dimensionless rotational constants hcA

kBT
, hcB
kBT

and hcC
kBT

, respectively. The summation symbol means a rota-

tional summation for a, b and c (e.g.,
P

a ¼ aþ bþ c andP
ab
c ¼ ab

c þ bc
a þ ca

b ).

Fig. 1 shows the Qrot differences calculated using differ-
ent methods. The Y-axis denotes the deviations of the cal-
culated results using Eq. (26) to the ones calculated by
direct summation in the unit of per mil (‰). First, the solid
Fig. 1. Deviations between the direct summation of the experi-
mentally measured or high-accuracy calculated rotational lines at
the ground vibrational state and calculated by the formula of
Watson (1988). The deviations were calculated by Deviation
= [Qrot (Calculated)/Qrot (Summated) – 1] * 1000. H2

16O; 1030
measured rotational lines (Tennyson et al., 2001) with
A = 28.0887 cm�1, B = 14.4453 cm�1 and C = 9.2490 cm�1;
HD16O; 1625 calculated high-accuracy rotational lines (Voronin
et al., 2010) with A = 23.4140 cm�1, B = 9.1031 cm�1 and
C = 6.4066 cm�1; H2

32S; 1704 calculated high-accuracy rotational
lines (Azzam et al., 2016) with A = 10.3466 cm�1, B = 9.0357 cm�1

and C = 4.7268 cm�1. The Centdis means the deviation caused by
centrifugal distortion effect, which equals (fc � 1) * 1000 and fc
was obtained through the calculated molecular constants at
MP2/aug-cc-pVTZ level.
curves show the deviations of the Qrot calculated using the
Eq. (26) to the directly summed results for H2

16O, HD16O
and H2

32S by previous researchers. When temperature is
higher than a critical value (H2

16O: �80 K; HD16O: �40
K; H2S: �50 K), the deviations increase linearly. However,
when temperatures are lower than the critical values, the
deviations increase rapidly. The increasing deviations with
increasing temperature above the critical temperatures can
be satisfactorily explained by centrifugal distortion effect.
We have computed the centrifugal distortion effects (see
Section 2.4 for details) and illustrated in Fig. 1 in terms
of their contributions to the total deviation (Three dashed
lines). Thus, if the centrifugal distortion effects are factored
into the computation of the rotational partition functions
(three solid lines), the deviations become essentially negligi-
ble above the critical temperatures. However, below the
critical temperatures, centrifugal distortion effect is not ade-
quate to explain those huge deviations. The effect arising
from the nuclear-spin weights will significantly affect the
result of the calculated Qrot. For H2

16O, the deviation
between the calculated results and the direct summing of
experimental measures are 13.3% at 20 K. For a heavier
molecule as H2

32S, i.e., with much smaller rotational con-
stants, its nuclear-spin weight effect occurs at even lower
temperatures (<40 K). However, for HD16O, the increased
deviation below �40 K can only be explained by the failure
of Eq. (26) at extremely low temperatures due to there is no
nuclear-spin effect for HD16O. In general, Eq. (26) will
give us accurate results within 0.5% deviations through
the ambient or high temperatures until 50 K (e.g.,
HD16O/H2

16O, green dashed curve). Lower than 50 K we
must consider the nuclear-spin weight effect. In addition,
Watson (1988) also tried to add an approximated term to
his asymptotic equation to take the nuclear-spin effect into
account. However, our testing results show that this
approximated term gives worse results than the ones with-
out it. Therefore, we would recommend to not including
this term into the Qrot calculation.

2.4. Centrifugal distortion

A molecule will never be an ideal rigid rotator in the real
world, which leads to a minor deviation of Qrot from that of
rigid-rotator, especially at high temperatures. As a result,
Qrot calculated using a rigid rotator model is always smaller
than the one based on a non-rigid model (See Fig. 1). This
deviation is caused by the centrifugal distortion effect. Pre-
vious studies have evaluated this effect on isotope fraction-
ation at ambient and high temperature conditions (Richet
et al., 1977; Liu et al., 2010) but it remains unclear whether
this effect is important at much lower temperatures.

Previous studies have quantitatively evaluated this effect
for different type of molecules (e.g., Wilson, 1936; Kivelson
and Wilson, 1952; McDowell, 1987, 1988, 1990; Martin
et al., 1991). For the 4 types of molecules considered here
(linear, spherical-tops, symmetric-tops and asymmetric-
tops), accurate formulas to describe the centrifugal distor-
tion were derived by importing a simple correction factor fc:

(a). Linear molecules (McDowell, 1988; Martin et al.,
1991):
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Er ¼ BJðJ þ 1Þ � DJ 2ðJ þ 1Þ2 þ HJ 3ðJ þ 1Þ3 ð30Þ

f c ¼ 1þ 2dð3� bÞ
3b

þ 6ð2d2 � hÞ
b2

þ 120dðd2 � hÞ
b3

ð31Þ

where B, D and H are rotational constant, quartic and sex-
tic centrifugal constants in the unit of cm�1, and b, d and h

are dimensionless constants expressed as hcB
kBT

, D/B and H/B,

respectively.
(b). Spherical-tops (McDowell, 1987):

Er ¼ BJðJ þ 1Þ � DJ 2ðJ þ 1Þ2 þ HJ 3ðJ þ 1Þ3 ð32Þ

f c ¼ 1þ 15d
4b

or 1þ 3dð5� bÞ
4b

þ 105ð9d2 � 4hÞ
32b2

þ 3465dð13d2 � 12hÞ
128b3

ð33Þ

(c). Symmetric-tops (McDowell, 1990; Martin et al.,
1991):

Er ¼ BJðJ þ 1Þ þ ðA� BÞK2 � DJJ 2ðJ þ 1Þ2
�DJKJðJ þ 1ÞK2 � DKK4 þ HJJ 3ðJ þ 1Þ3
þHJKJ 2ðJ þ 1Þ2K2 þ HKJJðJ þ 1ÞK4 þ HKK6

ð34Þ

Here DJ, DJK and DKJ are quartic centrifugal constants,
and HJ, HJK, HKJ and HK are sextic centrifugal constants.
The expression of fc for symmetric-tops is cumbersome.
Please see Supplementary file Eqs. (S1)–(S5) for details.

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/j.
gca.2018.07.001.

(d). Asymmetric-tops (Martin et al., 1991):
The rotational Hamiltonian (Watson, 1968) for an

asymmetric-top molecule is

Ĥ ¼ Ĥ 2 þ Ĥ 4 þ Ĥ 6 ð35Þ
with

Ĥ 2 ¼ XJ 2
x þ YJ 2

y þ ZJ 2
z ð36Þ

Ĥ 4 ¼ T xxJ 4
x þ T yyJ 4

y þ T zzJ 4
z þ T xyðJ 2

xJ
2
y þ J 2

y J
2
xÞ

þ T yzðJ 2
y J

2
z þ J 2

z J
2
yÞ þ T zxðJ 2

z J
2
x þ J 2

xJ
2
z Þ

ð37Þ

Ĥ 6 ¼ UxxxJ 6
x þ UyyyJ 6

y þ UzzzJ 6
z þ UxxyðJ 4

xJ
2
y þ J 2

y J
4
xÞ

þUxxzðJ 4
xJ

2
z þ J 2

z J
4
xÞ þ UyyzðJ 4

y J
2
z þ J 2

z J
4
yÞ

þUyyxðJ 4
y J

2
x þ J 2

xJ
4
yÞ þ UzzxðJ 4

z J
2
x þ J 2

xJ
4
z Þ

þUzzyðJ 4
z J

2
y þ J 2

y J
4
z Þ þ UxyzðJ 2

xJ
2
y J

2
z þ J 2

z J
2
y J

2
xÞ

ð38Þ

where T and U are quartic and sextic centrifugal constants.
The expression of fc is lengthy (see Supplementary file Eqs.
(S6)–(S13)).

2.5. Vibrational anharmonicity

Vibrational anharmonicity has been shown to be an
important factor in the computation of accurate equilib-
rium fractionation factors (e.g., Wolfsberg, 1969a, 1969b;
Wolfsberg et al., 1970; Richet et al., 1977; Liu et al.,
2010). Under the framework of second-order perturbation
theory, the vibrational energy level of a polyatomic mole-
cule is
E
hc
¼ G0 þ

X
i

xi ni þ di

2

� �
þ
X
i¼1

�
X
jPi

xij ni þ di

2

� �
nj þ dj

2

� �
þ
X
sPt

gstlslt ð39Þ

where G0 is an anharmonic term in the unit of cm�1, which
is the direct result of the perturbation theory and vanishes
in actual spectroscopic measurements. The subscripts s

and t denotes doubly-degenerated vibrational modes, xi

and di are harmonic frequency and degeneracy of the ith
vibration mode, xij is the anharmonic constants and the
gst is the anharmonic constant of vibrational l-doubling
(Only for HCN, DCN in this study) in the unit of cm�1.
To calculate G0 term, many researchers had derived differ-
ent formulas (e.g., Shaffer, 1941; Shaffer and Schuman,
1944; Wolfsberg, 1969a, 1969b; Born and Wolfsberg,
1972; Bron, 1974; Pliva, 1990; Truhlar and Isaacson,
1991; Cohen et al., 1992; Zhang et al., 1993; Barone and
Minichino, 1995; Barone, 2004, 2005; Willetts and Handy,
1995; Isaacson, 2002, 2006; Tajti et al., 2004; Schuurman
et al., 2005; Bomble et al., 2006; Vázquez and Stanton,
2006; Pfeiffer et al., 2013; Piccardo et al., 2015). Here we
use three different formulas to calculate G0 term for mole-
cules with different symmetries.

For diatomic molecules (e.g., H2), the vibrational energy
levels can be written as

En

hc
¼ G0 þ xe nþ 1

2

� �
� xexe nþ 1

2

� �2

ð40Þ

where xe is the harmonic vibrational frequency with the
unit of cm�1 and xe is a dimensionless anharmonic term,
which is always positive. Here G0 can be expressed as
(Wolfsberg, 1969b)

G0 ¼ Be

4
þ aexe

12Be
þ ae2xe

2

144Be
3
� xexe

4
ð41Þ

where Be is the equilibrium rotational constant and ae is the
vibration-rotational coupling constant both with the unit of
cm�1.

For all the non-linear polyatomic molecules considered
in this study, the expression for G0 term can be summarized
as (Born and Wolfsberg, 1972; Barone, 2004, 2005;
Piccardo et al., 2015)

G0 ¼ 1
64

P
i
/iiii � 7

576

P
i

/2
iii
xi
þ 3

64

P
i–j

xi/
2
ijj

4x2
j�x2

i
� 1

4

P
i<j<k

xixjxk/
2
ijk

Dijk

� 1
4

P
a¼x;y;z

P
m<n

Ba
e 1þ 2 famn

� �2h i
ð42Þ

where /iii and /iiii are reduced cubic and quartic force con-
stants in the unit of cm�1, Ba

e is the equilibrium rotational
constant along the principal rotation axis a, famn is the Cori-
olis coupling constant and Dijk is defined as

Dijk ¼ xiþxjþxk

� �
xiþxj�xk

� �
xi�xjþxk

� �
xi�xj�xk

� �
ð43Þ

For triatomic linear molecules in this study (HCN and
DCN), we use the equation of Bron (1974) and Isaacson
(2002) to calculate its G0 term:

https://doi.org/10.1016/j.gca.2018.07.001
https://doi.org/10.1016/j.gca.2018.07.001
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G0 ¼ 1
64

/1111 þ /2222ð Þ þ 1
48
/3333 � 7

576

/2
111

x1
þ /2

222

x2

� �
þ 3

64

x2/
2
211

4x2
1
�x2

2

þ x1/
2
221

4x2
2
�x2

1

� �
þ 1

16

x1/
2
331

4x2
3
�x2

1

þ x2/
2
332

4x2
3
�x2

2

� � ð44Þ

where x3 is the doubly-degenerated vibrational mode.
Difficulties arise in the anharmonic treatment of vibra-

tional energy levels under high-temperature conditions.
For molecules at high temperatures (such as >1000 K),
the value of the vibrational quantum number n becomes
too large to get the correct vibrational frequencies and even
negative frequencies instead due to flaws in perturbation
theory. As a result, a numerical converging summation
method must be developed to calculate Qvib at high temper-
atures when the perturbation theory does not work some-
times (Truhlar and Isaacson, 1991).

In the present study we are dealing with systems under
super-cold conditions, which means that almost all mole-
cules are in the ground vibrational energy state and the con-
tributions of excited states to Qvib are very small and even
can be ignored. To obtain Qvib, we have summed up the first
hundreds or thousands of excited vibrational energy states
at anharmonic level, which corresponding to an nm (the big-
gest vibrational quantum number) of 5 or 10. To determine
the value of nm that the value of Qvib converged, we have
calculated the Qvib at 300 K by changing the value of nm
from 0 to 50. For convenience, we used the same nm for
each vibrational mode with a very tight convergence thresh-

old (Qvibðnmþ1Þ
QvibðnmÞ � 1 6 10�6). Our result shows that the corre-

sponding values of nm are small enough to guarantee the
validity of the perturbation theory at temperatures lower
than 300 K and all molecules considered here have been
carefully checked without exception.

2.6. Vibration-rotation coupling

The vibrational and rotational motions of a molecule
were treated independently in the classical Urey model or
the B-M equation. However, the vibration and rotation of
molecules are coupled in the real world. Therefore, the true
rotational constants along the principal axis at different
vibrational states are different, and can be expressed by
(Pennington and Kobe, 1954; Barone, 2005)

Bn ¼ Be �
X
i

aB;i ni þ 1

2

� �
ð45Þ

where Bn is the rotational constant at the nth excited vibra-
tional state along axis B and aB;i is the vibration-rotational
coupling constants of the ith normal vibrational mode. The
vibration-rotational effect at the ground vibrational state
can be easily included by replacing equilibrium rotation
constant Be with the B0 when calculating the Qrot. As for
the vibration-rotational coupling involving excited vibra-
tional states, Richet et al. (1977) suggested using a correc-
tion factor to account for the vibrational-rotational
coupling involving excited vibrational states. For diatomic
molecules, the correction factor is

1þ d
exp uð Þ � 1

ð46Þ
where ui ¼ hxi
kBT

and d ¼ ae
B0
.

For polyatomic molecules, the correction factor is

Y
i

1þ 1

2

di
exp uið Þ � 1

� 	di
ð47Þ

where di is the degeneracy of the ith vibration mode, and di
is a constant that can be calculated by vibration-rotation
coupling constants along three principal rotational axis
and the rotational constants at ground vibrational state:

di ¼ ai;A
A0

þ ai;B
B0

þ ai;C
C0

ð48Þ
2.7. The correction for BOA

The Born-Oppenheimer approximation (BOA) is one of
the most fundamental concepts underlying the framework
of quantum chemistry. Under this approximation, the
motions of the nuclei and the electrons can be separated
and therefore become easier to treat in theory. For a mole-
cule under BOA, its total electronic Hamiltonian can be
expressed as

Ĥ e ¼ � 1

2

XN
i¼1

2
i �

XM
A¼1

XN
i¼1

ZA

rAi
þ
XN
i¼1

XN
j>i

1

rij
ð49Þ

A direct consequence of this approximation is that all
isotopologues of a molecule will have identical wavefunc-
tions and electronic energies. In addition, this approxima-
tion allows the use of the concept of potential energy
surface (PES), and makes it possible to use approximated
analytic expression for the PES, e.g., the harmonic approx-
imation ways of the calculation of molecular vibrations, or
a quartic or Morse potential for vibrational anharmonicity
analysis. However, the electronic energy difference beyond
the BOA may affect isotope fractionation behavior under
super-cold conditions. If we take the energy correction for
the BOA into account, the PES of one molecule and its iso-
topologues must be slightly different. Whether this differ-
ence can be ignored or not? Previous studies pointed that
this difference can be safely ignored (e.g., Kleinman and
Wolfsberg, 1974b; Valeev and Sherrill, 2003). As a result,
this energy correction can be independently imported and
there is no need to obtain the molecular constants of differ-
ent isotopologues under a framework beyond the BOA.

Born and Huang (1956) derived a first-order perturba-
tive result for this correction which called the Diagonal
Born-Oppenheimer Correction (DBOC). The DBOC can
be calculated through the electronic wavefunction of a
molecule by

EDBOC ¼
XM
i¼1

We �
2
R;i

2Mi










We

* +

¼
XM
i¼1

Z
We
� �

2
R;i

2Mi

 !
Wedr ð50Þ

where Mi is the mass of the ith atom of the molecule and 2
R;i

means to take the second-order derivative relative to the
coordinate of the ith nucleus of the molecule and the
integration is calculated relative to the coordinates of the
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electron. For an isotopologue pair, the correction factor
kDBOC caused by this energy difference can be expressed as

kDBOCðAXH=AXLÞ ¼ exp �EDBOCðAXH Þ � EDBOCðAXLÞ
kBT

� 	
ð51Þ

There are many works that have discussed this energy
correction (e.g., Kleinman and Wolfsberg, 1973, 1974a,
1974b; Bardo and Wolfsberg, 1975, 1977, 1978; Bardo
et al. 1978; Mead and Truhlar, 1979; Handy et al., 1986;
Schwartz and Le Roy, 1987; Postma et al., 1988; Ioannou
et al., 1996; Goncalves and Mohallem, 2003; Valeev and
Sherrill, 2003; Tajti et al., 2004, 2007; Mielke et al., 2005,
2009; Bomble et al., 2006; Gauss et al., 2006; Bubin and
Adamowicz, 2007; Jansen et al., 2007; Karton et al., 2007;
Harding et al., 2008b; Mohallem, 2008; Pachucki and
Komasa, 2008, 2009; Holka et al., 2011; Liévin et al.,
2011; Przybytek and Jeziorski, 2012; Pfeiffer et al., 2013;
Gidopoulos and Gross, 2014; Tubman et al., 2014;
Imafuku et al., 2016; Lutz and Hutson, 2016). However,
only a few of these studies focused on the isotope effect of
this energy correction (Kleinman and Wolfsberg, 1973,
1974a, 1974b; Bardo and Wolfsberg, 1975, 1976 1977,
1978; Bardo et al., 1978; Postma et al., 1988;
Chakraborty et al. 2014; Lutz and Hutson, 2016). Lutz
and Hutson (2016) calculated this correction at the CCSD
level for many diatomic molecules comprised of
alkali- and alkali-earth metals (in addition to Yb2) and their
isotopologues. They discussed the application on the
spectroscopy of ultracold molecules (isotopic mass shift)
to explore fundamental physical problems. Therefore, a sys-
tematic evaluation of the DBOC isotope effect for different
molecules is necessary.

2.8. Inversion splitting

In some non-planar molecules (e.g., NH3), each vibra-
tional or rotational energy level is doubled because of the
inversion splitting (McDowell, 1990), which results from
the quantum tunneling. It will split the vibrational levels
into two sublevels (i.e., symmetric Es and asymmetric Eas)
with an energy difference of Dv = Eas � Es about several
cm�1 and also split the rotational energy levels with an
energy difference of Dr, corresponding to a minor shift of
the rotational constants B0 (i.e., DB = B0,as � B0,s). It is
natural to infer that this type of energy level splitting will
change the values of Qvib and Qrot. Here we assume that
our calculated energy levels are all the lower energy states
just like what previous work did (Born and Wolfsberg,
1972). In addition, we just calculated the contribution of
this effect at the ground vibrational and rotational state
due to the low temperatures.

For vibrational ground state, the correction factor kv_inv
caused by the inversion splitting can be expressed by

kvinv �
1

2
1þ exp

�hcD0v

kBT

� �� 	
ð52Þ

where D0v is the experimentally observed splitting energy
difference at ground vibrational state. In this study, this
energy difference is 0.7935 and 0.406 cm�1 for NH3 and
NH2D (Weiss and Strandberg, 1951), corresponding to
kv_inv values of 0.9943 and 0.9971 at 100 K, respectively.

For rotational levels, the correction factor kr_inv is

kv inv � 1

2

QrotðA0 þ DA;B0 þ DB;C0 þ DCÞ
QrotðA0;B0;C0Þ þ 1

� 	
ð53Þ

where DA, DB and DC are the observed shifts on the
rotational constants. In this study, these shifts are DA =
0.0020 cm�1, DB = �0.0050 cm�1 for NH3 (Benedict and
Plyler, 1956), and DA = �0.001070 cm�1, DB =
�0.000354 cm�1 and DC = �0.000273 cm�1 for NH2D
(Snels et al., 2006), corresponding to almost constant kr_inv
values of 1.00009 and 1.00006 for NH3 and NH2D from 50
to 300 K, respectively. As a result, the correction of the
inversion splitting effect for vibrational energy levels must
be considered under super-cold conditions, but for rota-
tional energy levels, this splitting effect can be safely ignored
(for NH3 and NH2D, this effect only causes a correction
factor less than 1.0001).
3. METHODS

3.1. Calculation of partition function ratios for an

isotopologue pair

Using all the corrections in Section 2, the full partition
function ratio (denoted as FPFR hereafter) of an isotopo-
logue can be calculated by

FPFR AXH=AXLð Þ ¼ QvibQrotf ckv invð ÞAXH

QvibQrotf ckv invð ÞAXL

MAXH

MAXL

.mXH

mXL

� �3
2

� kDBOC AXH=AXLð Þ
kDBOC XH=XLð Þ

ð54Þ
In addition, every specific contributions from different

partition function ratios and correction factors, which are
in acronyms defined at below:

TRANS (translational partition function ratio):

Qtransð ÞAXH
Qtransð ÞAXL

=
Qtransð ÞXH
Qtransð ÞXL

¼ MAXH
MAXL

=
mXH
mXL

� �3
2

;

VIB (vibrational partition function ratio including

anharmonicity):
Qvibð ÞAXH
Qvibð ÞAXL

;

ROT (rotational partition function ratio with nuclear-

spin effect):
Qrotð ÞAXH
Qrotð ÞAXL

;

CENTDIS (centrifugal distortion correction factor

ratio):
f cð ÞAXH
f cð ÞAXL

;

VIBROT (vibration-rotational coupling correction fac-

tor ratio):
kvib rotð ÞAXH
kvib rotð ÞAXL

;

INV (inversion splitting correction factor ratio):
kvinvð ÞAXH

kvinvð ÞAXL

;

DB (DBOC correction factors for FPFR): kDBOC AXH =AXLð Þ
kDBOC XH =XLð Þ .
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3.2. Quantum chemistry calculation methods

The equilibrium structures and molecular constants of
H2, HF, HCl, H2O, H2S, NH3, HCHO and their isotopo-
logues are calculated using the MP2 method (Møller and
Plesset, 1934) with the aug-cc-pVTZ basis set (Dunning,
1989; Woon and Dunning, 1993) by Gaussian09 software
(Frisch et al., 2009) based on the method developed by
Barone (2005). The anharmonic frequency analysis of
CH4 is performed by using the CFOUR package
(CFOUR, 2000; Harding et al., 2008a) at the same theoret-
ical level and basis set because the anharmonic vibration
analysis for spherical-top molecules is not supported in
Gaussian09. Previous works have shown that the MP2
method with large basis sets (e.g., aug-cc-pVTZ) is very use-
ful and reasonably accurate for approximate calculations of
low lying vibrational levels (Barone, 2005; Liu et al., 2010).
For CH4, the calculated C-H bond length and harmonic
vibrational frequencies are agreed within errors of
0.000001 Å and 0.002 cm�1 between these two programs,
which had negligible effect on the final calculated FPFR
values.

However, the anharmonic treatment of the linear mole-
cules (e.g., HCN and DCN) is still under testing in Gaus-

sian09, which means that our results for HCN and DCN
may be problematic. Therefore, we also calculated the
molecular constants of these molecules using the CFOUR

packages. Then we calculated the FPFR values using the
two sets of data, and they agreed within 0.23% (see
Table S6 in Supplementary file). In addition, all the mole-
cules considered here are closed-shell species, and we did
not consider open-shell species such as O2, NO and NO2

since the anharmonic vibration analysis results at MP2 level
with a relatively large basis set (e.g., aug-cc-pVTZ) may be
problematic due to the spin contamination, requiring a
DFT method that was recommended for such systems by
Barone (2005).

As for the DBOC, we adopt the methods built in the
CFOUR package (Harding et al., 2008a) to calculate this
Table 1
Calculated and experimentally measured fundamental vibrational freque

Frequency (cm�1) Frequency (cm�1)

Molecule Exp. Calc. Molecule Ex

H2 4161 4283 HDO 37
HD 3632 3737 27
HF 3962 3964 14
DF 2907 2908 H2S 26
HCl 2886 2959 26
DCl 2091 2142 11
HCN 3312 3357 NH3 34

2089 2013 33
712 731 16

DCN 2630 2630 95
1925 1875 HCHO 28
569 577 27

H2O 3756 3785 17
3657 3677 15
1595 1577 12

11
energy correction. Gauss et al. (2006) developed the meth-
ods of using configuration-interaction and coupled-cluster
theory to accurately evaluate the DBOC and implemented
them into the Mainz-Austin-Budapest Version of the
ACESII package, which later became known as the
CFOUR. Their method made it possible to accurately
calculate this energy correction with a comparable cost as
a harmonic frequency analysis at the same theoretical level.
The CFOUR program can calculate the DBOC at
HF-SCF, MP2 and CCSD levels. Tajti et al. (2007) and
Tajti et al. (2007) compared the results of different methods
and basis sets. Gauss et al. (2006) recommended the CCSD/
aug-cc-pCVTZ level for the DBOC calculation with a sug-
gested converged value to about 1–2 cm�1. Also, Tajti et al.
(2007) evaluated the differences between the coupled cluster
and the perturbation theory methods on the calculation of
DBOC. Their results showed that DBOC under the
MP2 scheme could be comparable for most cases (except
some special molecules such as NO) to the much more
computationally expensive CCSD treatments. In this study,
when the system is large, the DBOC calculation is
performed at MP2/cc-pVTZ level, and for small molecules,
a much more computationally expensive calculation at
CCSD/aug-cc-pCVTZ level is adopted.

4. RESULTS

4.1. Frequencies and molecular constants

The calculated fundamental frequencies are compared
with the experimental results of H2, HF, HCl, HCN,
H2O, H2S, NH3, HCHO, CH4 and their isotopologues in
Table 1. Generally, our calculated frequencies are in good
agreement with the experimental ones. However, for
H-bearing diatomic molecules, e.g., H2 and HCl, the MP2
method obviously overestimated the fundamental frequen-
cies. This overestimation is probably a result of inadequacy
of the theoretical method we used. Fig. 2 shows that the cal-
culated and experimental fundamentals fall into a line with
ncies.

Frequency (cm�1)

p. Calc. Molecule Exp. Calc.

07 3732 DCHO 2844 2900
27 2742 2121 2125
02 1387 1723 1713
26 2701 1400 1409
15 2688 1074 1078
83 1198 1041 1031
44 3502 CH4 3019 3074
37 3392 2917 2970
27 1626 1534 1558
0 945 1306 1324
43 2866 CH3D 3017 3071
82 2849 2945 2996
46 1735 2200 2234
00 1516 1471 1494
49 1251 1300 1320
67 1190 1155 1174



Fig. 2. Comparison of the calculated and experimental
fundamentals.

Fig. 3. Calculated DBOC differences of DF/HF, HDO/H2O and
H2

18O/H2O isotopologues at CCSD level with different basis sets
and relative calculation times (H2O) compared with CCSD/cc-
pVDZ result. The symbols in the horizontal axis denote different
basis sets (X = cc-pVnZ; X’ = aug-cc-pVnZ; CX = cc-pCVnZ;
CX’ = aug-cc-pCVnZ; n = D, T, Q). The left Y-axis denotes the
calculated DBOC difference of an isotopologue pair (expressed as
broken lines). The right Y-axis shows the calculation time of the
DBOC value of the H2O using different basis set (expressed as blue
bars and all the calculation time has been normalized to the time
consumed at CCSD/cc-pVDZ level). (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)
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a slope of 1.0109, with an R-square value as 0.9998. The fit-
ting result means that our calculation overestimated the
fundamental frequencies about 1.09% in average. However,
the deviations are mainly from those high frequencies which
are not sensitive to isotope exchange. Therefore, we have
not applied the scaling treatment in this study. All the
molecular constants are listed in Tables S1–S5 of Supple-
mentary File.

4.2. DBOC corrections

Using the CFOUR program, the DBOC values are cal-
culated for all the molecules we studied. To guarantee the
accuracy of our calculation, we firstly use H2O, HF and
their isotopologues to test the influences of different theo-
retical levels and different equilibrium structures on the cal-
culated DBOC values.

We have tested different basis sets, including cc-pVnZ
(Dunning, 1989; Woon and Dunning, 1993), aug-cc-pVnZ
(Dunning, 1989; Woon and Dunning, 1993), cc-pCVnZ
(Dunning, 1989; Woon and Dunning, 1995; Peterson and
Dunning, 2002) and aug-cc-pCVnZ (Dunning, 1989;
Woon and Dunning, 1995; Peterson and Dunning, 2002),
where n = D, T and Q, to check the convergence of the
DBOC for an isotopologue pair (HDO/H2O or
H2

18O/H2O). The basis sets which include the core electron
correlation effect (cc-pCVnZ and aug-cc-pCVnZ where
n = D, T and Q) have no definitions for H and He. The
testing results are shown in Fig. 3. The left Y-axis denotes
the DBOC difference of an isotopologue pair calculated
by EDBOC (AXH) � EDBOC (AXL) which presented by green
(DF/HF), black (HDO/H2O) and red (H2

18O/H2O) broken
lines. The right side of the Y-axis shows the computational
time consumed (Normalized to the CCSD/cc-pVDZ level)
when calculating the EDBOC of H2O with different basis sets,
which expressed as blue bars. The X-axis denotes the
basis sets used by simple abbreviations (X = cc-pVnZ;
X’ = aug-cc-pVnZ; CX= cc-pCVnZ; CX’ = aug-cc-pCVnZ;
n = D, T and Q). Generally, we can see that the DEDBOC

variations are about 2 cm�1 for the pair of DF/HF and
HDO/H2O, and 1.5 cm�1 for the pair of H2

18O/H2O for
all the basis sets being tested. Then, for H/D systems we
considered here (DF/HF and HDO/H2O pair), the inclu-
sion of the diffuse function has significant effect on the
results. For example, DEDBOC (DF/HF) changes from
�21.555 cm�1 to �19.425 cm�1 when the basis set changes
from cc-pVDZ to aug-cc-pVDZ. However, for H2

18O/H2O
pair, the effect of the diffuse function is relatively small
and can be negligible (i.e., from �58.086 cm�1 to
�58.064 cm�1 when basis set changes from cc-pVDZ to
aug-cc-pVDZ). In addition, the effect of the core-electron
correlation can also significantly change the result for
H2

18O/H2O pair, from �58.086 cm�1 to �58.829 cm�1 when
the basis set changes from cc-pVDZ to cc-pCVDZ. For
DF/HF and HDO/H2O, the effect of the core-electron cor-
relation is small (DF/HF: �21.555 cm�1 to �21.529 cm�1;
HDO/H2O: �24.065 cm�1 to �24.045 cm�1, basis set
changes from cc-pVDZ to cc-pCVDZ). Finally, when the
effects of the diffuse function and the core-electron correla-
tion are both taken into account, we can see that the results
converged within 0.1 cm�1 when basis set changes from
aug-cc-pCVTZ to aug-cc-pCVQZ. In the end, we adopt
the aug-cc-pCVTZ as the basis set for our calculation for
the H/D systems due to its accuracy and efficiency (only
10% of the time consumed by aug-cc-pCVQZ). In addition,
we just need to perform a DBOC calculation only once for
each molecule. The DBOC values of its other isotopologues
can be easily obtained by running the CFOUR packages
immediately after a full DBOC calculation was finished.

The DBOC involves calculation of the second-
derivatives relative to the nuclear coordinates, so it must
be structure-dependent. Therefore, the structure sensitivity



Table 3a
Calculated DBOC values at the CCSD/aug-cc-pCVTZ level.

Molecule DBOC (cm�1) Molecule DBOC (cm�1)

H 59.682 NH3 598.220
D 29.856 NH2D 572.984
H2 114.652 CH4 595.116
HD 86.003 CH3D 566.401
HF 624.151
DF 605.041 Isotopologue pair DBOC (cm�1)
HCl 1385.903 D/H �29.826
DCl 1361.521 HD/H2 �28.649
HCN 872.191 DF/HF �19.110
DCN 846.240 DCl/HCl �24.382
H2O 620.588 DCN/HCN �25.950
HDO 598.323 HDO/H2O �22.265
H2S 1384.903 HDS/H2S �27.546
HDS 1357.357 NH2D/NH3 �25.236
HCHO 1036.116 CH3D/CH4 �28.715
DCHO 1002.157
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of the DBOC calculations on 8 kinds of different structures
of H2O are checked at the CCSD/aug-cc-pCVTZ level (7
structures optimized with different quantum chemistry
methods + 1 experimentally determined structure. Detailed
information about these structures is listed in Table S7 in
Supplementary file). The results listed in Table 2 indicate
that minor equilibrium structure differences have negligible
effects on the final values of DBOC (generally < 0.05 cm�1).

Table 3a shows all the DBOC values calculated in this
study for H2, HF, HCl, H2O, H2S, NH3, CH4, HCHO
and their D-substituted isotopologues based on the
MP2/aug-cc-pVTZ optimized geometries. For partition
function ratios of an isotopologue pair, the correction

caused by DBOC is kDBOC ðAD=AHÞ
kDBOC ðD=HÞ (see Eq. (54)), which ranges

from �4.134 cm�1 (DCHO/HCHO – D/H) to 10.716 cm�1

(DF/HF – D/H), corresponding to a correction factor from
1.0200 to 0.9499 at 300 K. And we also compared our
results in Table 3b with previous DBOC calculations
(Kleinman and Wolfsberg, 1973, 1974a; Bardo and
Wolfsberg, 1978; Bardo et al., 1978). These results showed
the necessity of adding the electron-correlation contribu-
tions (both valence and core electrons) to the DBOC values.
Previous calculations did not include the electron-
correlation effect except for Bardo et al. (1978), which
estimated it by using a configuration interaction method.

From our results, the DBOC has significant effects on
the final calculation of H/D isotope fractionations for sys-
tems at both low and high temperatures. For example, we
have found that this correction can change the FPFR val-
ues of organic molecules by several percent even at 300 K.
It may cause serious problems when one calculates H/D
fractionations of organic molecules without considering
this effect. Unfortunately, to the best of our knowledge,
there is no theoretical work that considers this correction
right now in stable isotope geochemistry field. To have
some preliminary ideas of how large this effect will be for
organic molecules, we have calculated several important
organic molecules at CCSD/aug-cc-pCVTZ level (for small
organic molecules) and MP2/cc-pVTZ (for large organic
molecules) (Table 4). Our MP2 calculation reproduced
most DBOC values relative to the CCSD ones (99.5% in
average) which just like the conclusion of Tajti et al.
(2007), and corresponding correction factors are in agree-
ment within 0.3%.
Table 2
Calculated DBOC with CCSD/aug-cc-pCVTZ method using

Geometrya HDO/H2O

B3LYP/6-31G(d, p) �22.242
MP2(fc)/aug-cc-pVTZ �22.317
MP2/aug-cc-pVTZ �22.340
MP4(fc)/aug-cc-pVTZ �22.254
MP4/aug-cc-pVTZ �22.273
CCSD(T, fc)/aug-cc-pVQZ �22.277
CCSD(T) /aug-cc-pVQZ �22.286
Expt. �22.283
fc: Frozen-core calculation.
a All geometries data are from Computational Chemistry
4.3. FPFR values at super-cold conditions

Using the equations listed in Section 3.1, the natural log-
arithms of FPFR values and contributions from different
partition function ratios and corrections of HD/H2,
DF/HF, DCl/HCl, DCN/HCN, HDO/H2O, HDS/H2S,
DCHO/HCHO, NH2D/NH3 and CH3D/CH4 from 50 to
200 K are calculated and listed in Tables 5.1–5.9 and sum-
marized in Table 6. The results of ‘‘RPFR” are those
directly using the B-M equation with the harmonic frequen-
cies along with a zero-point energy scaling treatment (scal-
ing factor SZPE is as 0.985).

For a FPFR value, the contribution of each items pro-
posed in Section 3.1 varies differently except for the
TRANS item which is a temperature-independent constant.
Generally, the VIB contribution dominates a FPFR value.
The contribution of the rotational motion (ROT) is quite
different from that of the Urey model. In the Urey model,
the ROT is temperature-independent and always bigger
than unity as a result of the Teller-Redlich theorem
(Redlich, 1935; Wilson et al., 1955). In contrast, the ROT
value changes significantly as the temperature decreases
due to the quantum mechanical treatment of rotation with
the consideration of nuclear-spin weights. Also, the DBOC
different optimized geometries.

H2
18O/H2

16O HD/H2

�59.197 �28.571
�59.199 �28.649
�59.198 �28.648
�59.196 �28.588
�59.196 �28.588
�59.196 �28.583
�59.196 �28.583
�59.196 �28.591

Comparison and Benchmark DataBase (CCCBDB).



Table 3b
DBOC values (this study vs. previous works).

Molecule and reactions DBOC (cm�1) This study DBOC (cm�1) Other works

H 59.682 59.77a

D 29.856 29.90a

H2 114.652 114.59a

HD 86.003
HCl 1385.903 1361.59a

DCl 1361.521 1331.78a

HF + HD = DF + H2 9.538 7.77b

9.538 7.599c

HCl + HD = DCl + H2 4.267 3.25b

H2O + HD = HDO + H2 6.383 3.75d

H2O + D2 = D2O + H2 12.767 7.51d

H2 + D = HD + H 1.177 4.55d

a Bardo et al. (1978): Configuration interaction results.
b Kleinman and Wolfsberg (1974a): LCAO-MO-SCF results.
c Kleinman and Wolfsberg (1973): LCAO-MO-SCF results.
d Bardo and Wolfsberg (1978): LCAO-MO-SCF results.

Table 4
Calculated DBOC values for some organic molecules at the CCSD/aug-cc-pCVTZ and MP2/cc-pVTZ level and corresponding correction
factor k for the FPFR values at 300 K.

Isotopologue pair DBOCMP2 (cm
�1) kMP2 DBOCCCSD (cm�1) kCCSD

D/H �29.855 – �29.826 –
CH3D/CH4 �28.514 0.9936 �28.704 0.9946
C2H5D/C2H6 �29.254 0.9971 �29.414 0.9980
C2H3D/C2H4 �29.047 0.9961 �29.422 0.9981
HC„CD/HC„CH �25.938 0.9814 �26.469 0.9840
DCHO/HCHO �33.683 1.0185 �33.837 1.0194
CH3OD/CH3OH �23.250 0.9688 �23.081 0.9682
CH2DOH/CH3OH �30.119 1.0013 �30.119 1.0013
HCOOD/HCOOH �20.803 0.9575 �20.958 0.9584
DCOOH/HCOOH �29.843 0.9999 �29.874 1.0002
CH3C„CD/CH3C„CH �26.181 0.9825 –
CH2DC„CH/CH3C„CH �28.051 0.9914 –
CH3CDO/CH3CHO �36.885 1.0343 –
CH2DCHO/CH3CHO �28.650 0.9942 –
C6H5D/C6H6 �28.993 0.9959 –

Table 5.1
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
HD/H2 at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 8.5538 0.6537 0.0001 �0.0080 �0.0339 8.7347 8.4203
60 7.1282 0.5954 0.0001 �0.0109 �0.0282 7.2534 6.9930
70 6.1099 0.5338 0.0001 �0.0121 �0.0242 6.1763 5.9735
80 5.3461 0.4776 0.0001 �0.0122 �0.0212 5.3593 5.2088
90 4.7521 0.4298 0.0001 �0.0116 �0.0188 4.7205 4.6141
100 4.2769 0.3908 0.0001 �0.0107 �0.0169 4.2091 4.1383
110 3.8881 0.3596 0.0001 �0.0097 �0.0154 3.7916 3.7491
120 3.5641 0.3351 0.0001 �0.0087 �0.0141 3.4454 3.4247
130 3.2899 0.3160 0.0001 �0.0077 �0.0130 3.1541 3.1502
140 3.0549 0.3013 0.0001 �0.0069 �0.0121 2.9062 2.9149
150 2.8513 0.2900 0.0001 �0.0061 �0.0113 2.6929 2.7110
160 2.6731 0.2815 0.0001 �0.0055 �0.0106 2.5075 2.5326
170 2.5158 0.2752 0.0001 �0.0049 �0.0100 2.3451 2.3752
180 2.3761 0.2705 0.0001 �0.0044 �0.0094 2.2017 2.2353
190 2.2510 0.2672 0.0001 �0.0041 �0.0089 2.0742 2.1101
200 2.1385 0.2648 0.0001 �0.0037 �0.0085 1.9600 1.9974
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Table 5.2
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
DF/HF at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 16.1294 0.5450 0.0000 �0.0027 �0.3084 15.3984 15.8026
60 13.4412 0.5620 0.0000 �0.0031 �0.2570 12.7781 13.1153
70 11.5210 0.5740 0.0000 �0.0034 �0.2203 10.9063 11.1957
80 10.0809 0.5829 0.0000 �0.0037 �0.1927 9.5024 9.7560
90 8.9608 0.5897 0.0000 �0.0038 �0.1713 8.4104 8.6363
100 8.0647 0.5952 0.0000 �0.0040 �0.1542 7.5368 7.7405
110 7.3315 0.5996 0.0000 �0.0041 �0.1402 6.8220 7.0076
120 6.7206 0.6033 0.0000 �0.0042 �0.1285 6.2263 6.3968
130 6.2036 0.6064 0.0000 �0.0043 �0.1186 5.7223 5.8800
140 5.7605 0.6091 0.0000 �0.0043 �0.1101 5.2902 5.4370
150 5.3765 0.6114 0.0000 �0.0044 �0.1028 4.9158 5.0531
160 5.0404 0.6134 0.0000 �0.0044 �0.0964 4.5881 4.7172
170 4.7439 0.6152 0.0000 �0.0045 �0.0907 4.2990 4.4208
180 4.4804 0.6168 0.0000 �0.0045 �0.0857 4.0421 4.1573
190 4.2446 0.6182 0.0000 �0.0045 �0.0811 3.8121 3.9216
200 4.0323 0.6194 0.0000 �0.0046 �0.0771 3.6052 3.7094

Table 5.3
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
DCl/HCl at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 12.2948 0.6143 0.0000 �0.0030 �0.1567 11.7523 11.9220
60 10.2457 0.6229 0.0000 �0.0032 �0.1305 9.7377 9.8796
70 8.7820 0.6289 0.0000 �0.0033 �0.1119 8.2986 8.4208
80 7.6843 0.6335 0.0000 �0.0034 �0.0979 7.2193 7.3266
90 6.8305 0.6370 0.0000 �0.0034 �0.0870 6.3798 6.4756
100 6.1474 0.6398 0.0000 �0.0035 �0.0783 5.7082 5.7948
110 5.5886 0.6421 0.0000 �0.0035 �0.0712 5.1587 5.2378
120 5.1229 0.6440 0.0000 �0.0036 �0.0653 4.7008 4.7736
130 4.7288 0.6456 0.0000 �0.0036 �0.0603 4.3134 4.3808
140 4.3910 0.6470 0.0000 �0.0036 �0.0559 3.9812 4.0442
150 4.0983 0.6482 0.0000 �0.0036 �0.0522 3.6934 3.7524
160 3.8421 0.6492 0.0000 �0.0037 �0.0490 3.4416 3.4971
170 3.6161 0.6501 0.0000 �0.0037 �0.0461 3.2193 3.2718
180 3.4152 0.6509 0.0000 �0.0037 �0.0435 3.0218 3.0716
190 3.2355 0.6517 0.0000 �0.0037 �0.0412 2.8451 2.8924
200 3.0737 0.6523 0.0000 �0.0037 �0.0392 2.6860 2.7312
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correction (DB) can also significantly change the FPFR
value under super-cold conditions (e.g., The DB value for
HD/H2 pair can change from 0.9667 to 0.9916 at the tem-
perature range of 50–200 K). The biggest difference we
found for simple gaseous H/D system is the DF/HF pair
(10.716 cm�1 relative to D/H pair) which means the DB
value is 0.9499 even at 300 K. The DF/HF pair may not
be geochemically significant, but we think it is necessary
to emphasis the importance of the DBOC in isotope frac-
tionation calculation.
4.4. Equilibrium constants of isotopic exchange reactions

Table 7 shows the calculated equilibrium constants of
some isotopic exchange reactions at ambient temperatures
and the comparisons with previous theoretical and
experimental results. For an isotopologue pair, the DBOC
difference can be written as (from Eq. (50))

EDBOC AXH=AXLð Þ ¼ EDBOC AXHð Þ � EDBOC AXLð Þ
¼ We �

2
R;X

2
1

mXH
� 1

mXL

� �


 


We

D E
¼ mXH �mXL

2mXH mXL
Weh j2R;X Wej i

ð55Þ

Note that EDBOC will be zero for a reaction like H2 +
D2 = 2HD, due to exactly identical electronic wavefunction
We for all the three isotopologues (Bardo and Wolfsberg,
1975). Therefore, we don’t have to evaluate the contribu-
tion of DBOC when dealing with this kind of isotopic
exchange reactions.

The calculated results in Table 7 are in excellent agree-
ment with experimental works at ambient temperatures.
There is no equilibrium isotope fractionation experiment
at super-cold conditions (<200 K) at present for the com-
parison. The data provided in Table 7 appear to be the first



Table 5.4
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
DCN/HCN at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 17.3336 0.1980 0.0000 �0.0011 �0.1115 16.4353 16.4626
60 14.4446 0.1984 0.0000 �0.0011 �0.0929 13.5654 13.5883
70 12.3811 0.1988 0.0000 �0.0011 �0.0797 11.5155 11.5353
80 10.8335 0.1990 0.0000 �0.0011 �0.0697 9.9780 9.9955
90 9.6299 0.1992 0.0000 �0.0011 �0.0620 8.7824 8.7981
100 8.6672 0.1993 0.0000 �0.0011 �0.0558 7.8260 7.8404
110 7.8798 0.1994 0.0000 �0.0011 �0.0507 7.0438 7.0571
120 7.2240 0.1995 0.0000 �0.0011 �0.0465 6.3923 6.4048
130 6.6695 0.1996 0.0000 �0.0011 �0.0429 5.8414 5.8534
140 6.1948 0.1997 0.0000 �0.0011 �0.0398 5.3698 5.3814
150 5.7840 0.1997 0.0000 �0.0011 �0.0372 4.9617 4.9730
160 5.4252 0.1998 0.0000 �0.0011 �0.0349 4.6053 4.6163
170 5.1092 0.1998 0.0000 �0.0011 �0.0328 4.2914 4.3023
180 4.8291 0.1999 0.0000 �0.0012 �0.0310 4.0131 4.0240
190 4.5791 0.1999 0.0000 �0.0012 �0.0293 3.7648 3.7756
200 4.3547 0.1999 0.0000 �0.0012 �0.0279 3.5419 3.5528

Table 5.5
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
HDO/H2O at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 17.7630 0.4764 0.0002 �0.0031 �0.2176 17.0619 17.5165
60 14.8025 0.4815 0.0002 �0.0032 �0.1813 14.1427 14.5219
70 12.6879 0.4852 0.0002 �0.0033 �0.1554 12.0575 12.3830
80 11.1019 0.4879 0.0003 �0.0034 �0.1360 10.4937 10.7788
90 9.8684 0.4900 0.0003 �0.0034 �0.1209 9.2773 9.5311
100 8.8815 0.4916 0.0003 �0.0035 �0.1088 8.3042 8.5329
110 8.0741 0.4930 0.0004 �0.0035 �0.0989 7.5080 7.7162
120 7.4013 0.4941 0.0004 �0.0035 �0.0907 6.8446 7.0356
130 6.8319 0.4951 0.0004 �0.0036 �0.0837 6.2832 6.4597
140 6.3439 0.4959 0.0005 �0.0036 �0.0777 5.8020 5.9661
150 5.9210 0.4966 0.0005 �0.0036 �0.0725 5.3849 5.5383
160 5.5510 0.4972 0.0005 �0.0036 �0.0680 5.0200 5.1640
170 5.2244 0.4978 0.0005 �0.0037 �0.0640 4.6981 4.8337
180 4.9342 0.4982 0.0006 �0.0037 �0.0604 4.4119 4.5402
190 4.6745 0.4987 0.0006 �0.0037 �0.0573 4.1558 4.2775
200 4.4408 0.4990 0.0006 �0.0037 �0.0544 3.9254 4.0411

Y. Zhang, Y. Liu /Geochimica et Cosmochimica Acta 238 (2018) 123–149 137
predictions of equilibrium isotope exchange constants
under super-cold conditions.

5. DISCUSSION

5.1. Comparisons with low-temperature experiments

To evaluate the accuracy of our method, the equilibrium
constants (Keq) of the NH3 + HD = NH2D + H2 exchange
reaction were calculated and compared with the experimen-
tally determined values at 200–300 K (Herrick and Sabi,
1943; Bigeleisen and Perlman, 1951; Perlman et al., 1953;
Ravoire et al., 1963). All the calculations used the same
set of data for NH3, NH2D, H2 and HD (see Tables S1
and S4 in the Supplementary file). Comparison results are
listed in Fig. 4. The Keq calculated using our method and
the B-M equation are expressed as black and red solid lines
in Fig. 4. And the Keq is also calculated using the method of
Richet et al. (1977) for HD/H2 and Liu et al. (2010) for
NH2D/NH3 (the green line). In addition, we also calculated
the Keq using our method but without the DBOC correc-
tion, which is expressed as a blue line. All the calculations
slightly overestimated the Keq to about 3% in average. This
is maybe due to the overestimation (�1.1% in average) of
the fundamental frequencies in our quantum chemistry cal-
culation (see Section 4.1 and Fig. 3), which will result in a
bigger zero-point-vibrational-energy difference and then a
bigger Keq. In the four calculated lines, our method (includ-
ing the DBOC) gives the best prediction when compared
with the experimental results. The results of other methods
(B-M equation, Richet et al., 1977; Liu et al., 2010) and our
method without the DBOC correction are almost the same,



Table 5.6
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
HDS/H2S at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 13.3482 0.5093 0.0002 �0.0032 �0.0656 12.7941 12.9460
60 11.1235 0.5119 0.0002 �0.0032 �0.0547 10.5829 10.7100
70 9.5344 0.5138 0.0003 �0.0033 �0.0469 9.0035 9.1128
80 8.3426 0.5151 0.0003 �0.0033 �0.0410 7.8190 7.9150
90 7.4157 0.5162 0.0003 �0.0033 �0.0365 6.8976 6.9833
100 6.6741 0.5171 0.0004 �0.0034 �0.0328 6.1606 6.2380
110 6.0674 0.5178 0.0004 �0.0034 �0.0298 5.5575 5.6281
120 5.5618 0.5183 0.0004 �0.0034 �0.0273 5.0550 5.1200
130 5.1339 0.5188 0.0005 �0.0034 �0.0252 4.6298 4.6900
140 4.7672 0.5193 0.0005 �0.0034 �0.0234 4.2654 4.3214
150 4.4494 0.5196 0.0006 �0.0034 �0.0219 3.9495 4.0020
160 4.1714 0.5199 0.0006 �0.0034 �0.0205 3.6732 3.7225
170 3.9261 0.5202 0.0006 �0.0034 �0.0193 3.4293 3.4759
180 3.7080 0.5205 0.0007 �0.0034 �0.0182 3.2126 3.2568
190 3.5129 0.5207 0.0007 �0.0035 �0.0173 3.0188 3.0607
200 3.3374 0.5209 0.0007 �0.0035 �0.0164 2.8444 2.8843

Table 5.7
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
DCHO/HCHO at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 17.8191 0.2993 0.0000 �0.0010 0.1189 17.2473 17.3037
60 14.8492 0.2996 0.0000 �0.0010 0.0991 14.2579 14.3049
70 12.7279 0.2997 0.0000 �0.0010 0.0850 12.1226 12.1629
80 11.1369 0.2999 0.0001 �0.0010 0.0743 10.5211 10.5564
90 9.8995 0.3000 0.0001 �0.0010 0.0661 9.2755 9.3069
100 8.9095 0.3001 0.0001 �0.0010 0.0595 8.2791 8.3073
110 8.0996 0.3001 0.0001 �0.0010 0.0541 7.4638 7.4895
120 7.4246 0.3002 0.0001 �0.0010 0.0496 6.7844 6.8080
130 6.8535 0.3002 0.0001 �0.0010 0.0457 6.2095 6.2313
140 6.3640 0.3003 0.0001 �0.0010 0.0425 5.7168 5.7370
150 5.9398 0.3003 0.0001 �0.0010 0.0396 5.2897 5.3086
160 5.5686 0.3003 0.0001 �0.0010 0.0372 4.9161 4.9338
170 5.2411 0.3003 0.0001 �0.0010 0.0350 4.5865 4.6032
180 4.9501 0.3004 0.0001 �0.0010 0.0330 4.2935 4.3093
190 4.6897 0.3004 0.0001 �0.0010 0.0313 4.0315 4.0464
200 4.4555 0.3004 0.0001 �0.0010 0.0297 3.7957 3.8099
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and they both overestimate the Keq when compared with
the best prediction (the black line), especially in the low
temperature end. Because the calculation difference between
the black and blue line is just whether the DBOC is
included or not, this offset is directly resulted from the
DBOC effect.

If the vibrational fundamentals of these molecules are
calculated using much better method (e.g., CCSD method),
the black, blue and green lines will be lower and more close
to the experimental values (Fig. 4). Whether the DBOC is
taking into account or not in the calculations do affect
the final result, especially at the low temperature end
(200 K). In this way, we can say that the DBOC do affect
the isotope fractionation behavior when temperature is
low. In addition, the same evaluation has been done for
the D2 + 2HCl = H2 + 2DCl reaction at 20 �C by Postma
et al. (1988). However, more experimental data at super-
cold temperatures (<200 K) are still needed.

5.2. Comparison with other methods

The study of Liu et al. (2010) illustrated that higher-
order corrections to the B-M equation such as vibrational
anharmonicity (including G0 term), quantum mechanical
rotation, vibration-rotational coupling and hindered inter-
nal rotation (for molecules have internal rotator such as
ethane) are necessary for the H/D system in order to com-
pute accurate isotope fractionation factors. However, it is
unclear whether the approach of Liu et al. (2010) can
produce sufficiently accurate fractionation factors under



Table 5.8
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT and DB values of
NH2D/NH3 at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT INV DB FPFR RPFR

50 18.8834 0.3601 0.0002 �0.0066 0.0055 �0.1321 18.1582 18.4143
60 15.7362 0.3639 0.0003 �0.0067 0.0046 �0.1101 15.0357 15.2492
70 13.4881 0.3660 0.0003 �0.0068 0.0039 �0.0943 12.8048 12.9885
80 11.8021 0.3674 0.0004 �0.0068 0.0034 �0.0825 11.1315 11.2929
90 10.4908 0.3684 0.0004 �0.0068 0.0030 �0.0734 9.8300 9.9741
100 9.4417 0.3692 0.0004 �0.0069 0.0027 �0.0660 8.7888 8.9191
110 8.5834 0.3699 0.0005 �0.0069 0.0025 �0.0600 7.9369 8.0559
120 7.8681 0.3704 0.0005 �0.0069 0.0023 �0.0550 7.2270 7.3365
130 7.2629 0.3709 0.0006 �0.0069 0.0021 �0.0508 6.6263 6.7279
140 6.7441 0.3712 0.0006 �0.0069 0.0019 �0.0472 6.1114 6.2062
150 6.2946 0.3716 0.0007 �0.0069 0.0018 �0.0440 5.6653 5.7541
160 5.9012 0.3719 0.0007 �0.0069 0.0017 �0.0413 5.2749 5.3585
170 5.5542 0.3721 0.0007 �0.0069 0.0016 �0.0388 4.9305 5.0095
180 5.2458 0.3724 0.0008 �0.0069 0.0015 �0.0367 4.6244 4.6993
190 4.9698 0.3726 0.0008 �0.0069 0.0014 �0.0348 4.3505 4.4217
200 4.7216 0.3728 0.0009 �0.0069 0.0014 �0.0330 4.1042 4.1720

Table 5.9
Calculated logarithms of FPFR with our method and the Urey model (RPFR), and VIB, ROT, CENTDIS, VIBROT, INV and DB values of
CH3D/CH4 at 50–200 K.

T(K) VIB ROT CENTDIS VIBROT DB FPFR RPFR

50 18.1887 0.2928 0.0005 �0.0017 �0.0320 17.5010 17.7850
60 15.1572 0.2952 0.0005 �0.0018 �0.0267 14.4772 14.7132
70 12.9919 0.2964 0.0006 �0.0019 �0.0228 12.3169 12.5191
80 11.3679 0.2971 0.0007 �0.0019 �0.0200 10.6966 10.8736
90 10.1048 0.2976 0.0008 �0.0019 �0.0178 9.4363 9.5937
100 9.0943 0.2980 0.0009 �0.0019 �0.0160 8.4281 8.5698
110 8.2676 0.2984 0.0010 �0.0019 �0.0145 7.6033 7.7320
120 7.5786 0.2987 0.0011 �0.0019 �0.0133 6.9159 7.0339
130 6.9956 0.2989 0.0012 �0.0019 �0.0123 6.3343 6.4432
140 6.4960 0.2991 0.0013 �0.0019 �0.0114 5.8358 5.9369
150 6.0629 0.2993 0.0014 �0.0019 �0.0107 5.4038 5.4980
160 5.6840 0.2995 0.0015 �0.0019 �0.0100 5.0258 5.1141
170 5.3497 0.2996 0.0016 �0.0019 �0.0094 4.6923 4.7753
180 5.0525 0.2997 0.0017 �0.0019 �0.0089 4.3958 4.4742
190 4.7867 0.2998 0.0018 �0.0019 �0.0084 4.1307 4.2048
200 4.5475 0.2999 0.0019 �0.0019 �0.0080 3.8921 3.9624
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super-cold conditions, so a comparison is needed at super-
cold conditions.

We calculated the relative differences of our method with
the B-M equation and the method proposed by Liu et al.
(2010) from 50 to 300 K using the same set of molecular
constants listed in the Supplementary file. The relative dif-
ference between the B-M equation and our method is
denoted as (RPFR/FPFR � 1) * 100, the RPFR values
are calculated using Eq. (9) with a 0.985 ZPE scaling factor.
All the isotopologue pairs considered in this study were
compared and the results are illustrated in Fig. 5(a). We
can see that the B-M equation significantly overestimated
the FPFR values for all the isotopologue pairs except the
HD/H2 from 50 to 300 K. And these deviations increase
as the temperature decreases. However, for HD/H2, an
inversed deviation appears when the temperature is lower
than �150 K. This inversion can be explained by the
nuclear-spin effect. The rotational contribution to the
RPFR value of the HD/H2 will be a temperature-
independent constant as a result of the B-M equation due
to the Teller-Redlich theorem (Redlich, 1935; Wilson
et al., 1955), corresponds to a lnROT value of �0.284.
But if we take the nuclear-spin effect into account, the
calculated lnROT value will be bigger than 0.284 when
the temperature is low (e.g., lnROT = 0.6537 at 50 K in
Table 5.1). Therefore, the RPFR/FPFR ratio of the
HD/H2 pair will be smaller than unity as the temperature
decreases due to the nuclear-spin effect. In addition, we cal-
culated the RPFR/FPFR ratios without including the
DBOC effect. The results are shown in Fig. 5(b). After
removing the DBOC effect, the deviations between the
RPFR and FPFR values decreased but still can reach a very
high value as �30% for CH3D/CH4 pair. Therefore, except
for the newly imported DBOC effect, other higher-order
corrections such as vibrational anharmonicity, quantum
mechanical rotation with nuclear-spin weights will still



Table 6
Calculated logarithms of the FPFR values of H2, HF, HCl, HCN, H2O, H2S, NH3, HCHO and CH4 at 50–200 K.

T(K) H2 HF HCl HCN H2O H2S NH3 HCHO NH3 CH4

50 8.7347 15.3984 11.7523 16.4353 17.0619 12.7941 18.1582 17.2473 18.1582 17.5010
60 7.2534 12.7781 9.7377 13.5654 14.1427 10.5829 15.0357 14.2579 15.0357 14.4772
70 6.1763 10.9063 8.2986 11.5155 12.0575 9.0035 12.8048 12.1226 12.8048 12.3169
80 5.3593 9.5024 7.2193 9.9780 10.4937 7.8190 11.1315 10.5211 11.1315 10.6966
90 4.7205 8.4104 6.3798 8.7824 9.2773 6.8976 9.8300 9.2755 9.8300 9.4363
100 4.2091 7.5368 5.7082 7.8260 8.3042 6.1606 8.7888 8.2791 8.7888 8.4281
110 3.7916 6.8220 5.1587 7.0438 7.5080 5.5575 7.9369 7.4638 7.9369 7.6033
120 3.4454 6.2263 4.7008 6.3923 6.8446 5.0550 7.2270 6.7844 7.2270 6.9159
130 3.1541 5.7223 4.3134 5.8414 6.2832 4.6298 6.6263 6.2095 6.6263 6.3343
140 2.9062 5.2902 3.9812 5.3698 5.8020 4.2654 6.1114 5.7168 6.1114 5.8358
150 2.6929 4.9158 3.6934 4.9617 5.3849 3.9495 5.6653 5.2897 5.6653 5.4038
160 2.5075 4.5881 3.4416 4.6053 5.0200 3.6732 5.2749 4.9161 5.2749 5.0258
170 2.3451 4.2990 3.2193 4.2914 4.6981 3.4293 4.9305 4.5865 4.9305 4.6923
180 2.2017 4.0421 3.0218 4.0131 4.4119 3.2126 4.6244 4.2935 4.6244 4.3958
190 2.0742 3.8121 2.8451 3.7648 4.1558 3.0188 4.3505 4.0315 4.3505 4.1307
200 1.9600 3.6052 2.6860 3.5419 3.9254 2.8444 4.1042 3.7957 4.1042 3.8921

Table 7
Calculated equilibrium constants compared with experimental values.

Reaction T(K) K (This work) K (Urey model) K (expt.)

H2 + D2 = 2HD 298 3.24 3.25 3.27 ± 0.02a

200 2.87 2.85
100 2.22 1.91
50 1.28 0.86

H2O + D2O = 2HDO 298 3.84 3.90
296 3.84 3.86 3.82 ± 0.06b

273 3.81 3.83 3.74 ± 0.02c

200 3.69 3.71
100 3.25 3.28
50 2.52 2.56

H2S + D2S = 2HDS 297 3.89 3.92 3.88 ± 0.03d

273 3.91 3.91
200 3.80 3.81
100 3.43 3.45
50 2.79 2.82

H2O + HD = HDO + H2 297 3.43 3.58 3.46 ± 0.04e

200 7.14 7.71
100 60.05 80.75
50 4135.02 8863.95

H2O + HDS = HDO + H2S 273 2.22 2.34 2.28f

300 2.06 2.17 2.10f

200 2.95 3.18
100 8.53 9.92
50 71.36 96.59

NH3 + NHD2 = 2NH2D 298 2.97 2.92 2.92 ± 0.08 g

273 2.96 2.90 2.90 ± 0.06 g

200 2.91 2.83
100 2.71 2.55
50 2.34 2.07

a Niki et al. (1965).
b Pyper and Christensen (1975).
c Friedman and Shiner (1966).
d Pyper and Newbury (1970).
e Bardo and Wolfsberg (1976).
f Richet et al. (1977).
g Pyper et al. (1967).
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Fig. 4. Calculated and experimentally determined equilibrium
constant for NH3 + HD = NH2D + H2 from 200 to 300 K. The
calculated values are showed as lines with different color using the
same set of data.

Fig. 5. Comparison of our calculated FPFR values with the RPFR
values calculated using the B-M equation from 50 to 300 K. (a) The
DBOC correction has been included. (b) The DBOC correction has
been ignored.
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drastically change the results, especially when the tempera-
ture is lower than 200 K.

Also, we calculated the relative differences between our
results with the previously introduced modified B-M equa-
tion’s results by Liu et al. (2010). To make difference with
the B-M equation, the RPFR value calculated using the
modified B-M equation is denoted as the CPFR (Corrected
Partition Function Ratio: Liu et al., 2010). Because the
method of Liu et al. (2010) can only be applied for non-
linear molecules, we just performed our comparison for
HDO/H2O, HDS/H2S, DCHO/HCHO, NH2D/NH3 and
CH3D/CH4 pairs. The comparison results are shown in
Fig. 6(a). Compared with the B-M equation, we can see that
the method of Liu et al. (2010) do improve the results by
including many higher-order corrections. And for the iso-
topologue pairs being compared here, almost all the relative
differences decreased: HDO/H2O (57.6% to 24.7%);
HDS/H2S (16.4% to 6.9%); DCHO/HCHO (5.8% to
�11.2%); NH2D/NH3 (29.2% to 13.8%) and CH3D/CH4

(32.8% to 3.4%) at 50 K. Interestingly, when we remove
the DBOC effect and recalculate the differences between
our method and the method of Liu et al. (2010), both
Fig. 6. Comparison of our calculated FPFR values with the CPFR
values calculated using the method of Liu et al. (2010) from 50 to
300 K. (a) The DBOC correction has been included. (b) The DBOC
correction has been ignored.
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results are converged within 0.5% from 50 to 300 K
(see Fig. 6(b)). Actually, this is a reasonable result because
almost all the corrections we considered in this study have
also been included in the modified B-M equation except for
the nuclear-spin, inversion splitting and the DBOC effects.
In addition, for these 5 isotopologue pairs, the nuclear-
spin and inversion splitting effect are very small and can
be ignored. Therefore, the big difference between Fig. 6(a)
and 6(b) is a direct result of the DBOC, which also shows
the necessity of including the DBOC into the calculations
under low temperature conditions. In Fig. 6(b), the small
difference between the FPFR and CPFR values (<0.5%)
probably a result of the different equations used to describe
those higher-order corrections.

As a result, the comparison confirms that the nuclear-
spin and the DBOC effect are important and they should
not be ignored at super-cold conditions.

5.3. The temperature dependence of FPFR under super-cold

conditions

Using the results in Tables 5.1–5.9, we can evaluate the
temperature dependence of all corrections (TRANS, ROT,
VIB, CENTDIS, VIBROT and DB) under super-cold con-
ditions. Taking the HD + H2O = HDO + H2 isotope
exchange reaction as an example, Fig. 7 shows how each
correction (except for the TRANS) changes with
temperatures.

In general, lnaTOTAL is proportional to 1/T under super-
cold conditions for the molecules investigated in the present
study (Fig. 7(a)) rather than 1/T2 at high temperatures pre-
dicted by the B-M equation. The vibrational energy differ-
ence (VIB) accounts for most part of fractionations
(Fig. 7(b)). This is just because the zero-point vibration
energy difference dominates the fractionation at the super-
cold conditions and lnaTOTAL approximately equals to
hcDEZPE

kB
� 1T . Also, the contribution of the DBOC is also lin-

early proportional to the 1/T (Fig. 7(f)), which is easy to
understand through Eq. (51). And lnaROT is almost linearly
proportional to the 1/T and no longer a temperature-
independent constant as predicted by the B-M equation.
This is because of the quantum effects of molecular rotation
with nuclear-spin weights. We think the slow converging
speed of the Qrot for HD/H2 pair can account for the minor
non-linearity of lnaROT, which can often described by a
polynomial series in previous works (Bigeleisen and
Mayer, 1947; Richet et al., 1977). The vibration-rotational
coupling (Fig. 7(d)) has minor contributions to lnaTOTAL

ranges from �0.001 to 0.009. However, lnaVIBROT show a
skewed raised relation to 1/T, which has a minimum of
�0.009 at �75 K. Finally, the centrifugal distortion
(Fig. 7(e)) rapidly increases with the increasing of tempera-
tures, which can be perfectly described by a cubic or quartic
polynomial expression of 1/T. As for the inversion splitting
effect, from the calculated result of NH2D/NH3 (Table 5.8),
we know that splitting of vibrational energy levels will sig-
nificantly change the FPFR values at low temperatures, but
the contribution of the splitting of rotational energy levels
can be safely ignored.
5.4. DBOC for kinetic isotope fractionation in an elementary

reaction

Except for equilibrium isotope effects, it is easy to infer
that the DBOC correction will have significant effect on the
reaction rate constant and therefore can change the kinetic
isotope effect (KIE) too (e.g., combination reaction of H
and H2: Mielke et al., 2005). Here we use the thermal
self-dissociation reaction of HCHO as an example to check
this possibility (calculation details can be found in Supple-
mentary file, Section S6). Its KIE in terms of D/H is con-
trolled by these three reactions:

H isotope : HCHO ��! ��Ka ½HCHO�TS ��!ka H2 þ CO ðaÞ

D isotope : DCHO ��! ��Kb ½DCHO�TS ��!kb HDþ CO ðbÞ
D isotope : DCHO ��! ��Kc ½HCDO�TS ��!kc HDþ CO ðcÞ

where the superscript TS means transition state. The
KIE of 13C/12C is controlled by these two reactions:

12C : H12CHO ��! ��Kd ½H12CHO�TS ��!kd H12 þ 12CO ðdÞ
13C : H13CHO ��! ��Ke ½H13CHO�TS ��!ke H2 þ 13CO ðeÞ
and the KIE of 18O/16O is controlled by these two

reactions:

16O : HCH16O ��! ��Kf ½HCH16O�TS ��!kf H2 þ C16O ðfÞ
18O : HCH18O ��! ��Kg ½HCH18O�TS ��!kg H2 þ C18O ðgÞ
First, the geometry optimization and harmonic fre-

quency analysis of the transition state [HCHO]TS is per-
formed using the B3LYP/6-311+G(d, p) level (Krishnan
et al., 1980; Becke, 1993; Schmidt et al., 1993) using the
Gaussian09 program. Only one imaginary vibration fre-
quency is obtained after vibration analysis for the transition
state. Then, the DBOC values of the HCHO and [HCHO]TS

with their D-substituted isotopologues are calculated via
CFOUR program at CCSD/aug-cc-pCVTZ level. Note that
there are two different sites for H in the [HCHO]TS, so the
total correction factor K for the KIEs of D/H, 13C/12C and
18O/16O of this dissociation can be calculated by

KH ¼ Kbkb þ Kckc
2Kaka

ð56Þ

KC ¼ Keke
Kdkd

ð57Þ

KO ¼ Kgkg
Kf kf

ð58Þ

The calculation results are listed in Table 8. It’s obvious
that the DBOC can significantly change the KIEs of the
thermal self-dissociation reaction of HCHO by factors of
0.9745, 1.0027 and 1.0006 for D/H, 13C/12C and 18O/16O
at 300 K, respectively. Their temperature dependences are
also provided (Table 8). In addition, the effect due to the
tunneling should also be considered. Mielke et al. (2005)
showed that for H + H2 reaction, the DBOC caused sub-
stantially larger barrier-height increases than tunneling.



Fig. 7. Calculated corrections (logarithm values) and their temperature dependence of the HD + H2O = H2 + HDO reaction at 50–300 K.

Table 8
Calculated DBOC correction factors for the KIEs of H/D, 13C/12C,
18O/16O of the self-dissociation reaction of HCHO at different
temperatures.

T(K) KH KC KO

300 0.9745 1.0027 1.0006
400 0.9808 1.0021 1.0004
500 0.9846 1.0016 1.0003
1000 0.9923 1.0008 1.0002
1500 0.9948 1.0005 1.0001
2000 0.9961 1.0004 1.0001
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And for the 13CH4 + C2H ? 13CH3 + C2H2 reaction, the
DBOC and tunneling effect for its rate coefficient are
1.006 and 1.012 at 90 K (Nixon et al., 2012), respectively.
Therefore, to obtain the KIEs with good accuracy under
super-cold conditions, except for the DBOC effect, the effect
of the quantum tunneling should also be included, which is
beyond the scope of this study.

5.5. Potential broad applications of DBOC

From Tables 3a and 4, we can see that DBOC values
for all the isotopologue pairs range from �4.134 cm�1



Table 9
DBOC correction factors for 12 gaseous molecules containing C,
N, O and S.

T(K) 13C/12C 15N/14N 18O/16O 34S/32S
Molecule CH4 NH3 H2O H2S

50 0.9783 0.9865 0.9868 0.9980
100 0.9891 0.9932 0.9934 0.9990
150 0.9927 0.9955 0.9956 0.9993
200 0.9945 0.9966 0.9967 0.9995
250 0.9956 0.9973 0.9974 0.9996
300 0.9963 0.9977 0.9978 0.9997

T(K) 13C/12C 15N/14N 18O/16O 34S/32S
Molecule CO2 *NNO CO2 SO2

50 0.9815 0.9939 0.9927 0.9962
100 0.9907 0.9970 0.9964 0.9981
150 0.9938 0.9980 0.9976 0.9987
200 0.9953 0.9985 0.9982 0.9990
250 0.9963 0.9988 0.9985 0.9992
300 0.9969 0.9990 0.9988 0.9994

T(K) 13C/12C 15N/14N 18O/16O 34S/32S
Molecule HCN N*NO SO3 SO3

50 0.9875 0.9887 0.9957 0.9901
100 0.9937 0.9943 0.9978 0.9950
150 0.9958 0.9962 0.9986 0.9967
200 0.9969 0.9972 0.9989 0.9975
250 0.9975 0.9977 0.9991 0.9980
300 0.9979 0.9981 0.9993 0.9983
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(DCHO/HCHO – D/H) to 10.716 cm�1 (DF/HF – D/H),
corresponding to a factor from 1.1263 and 0.6900 at 50 K,
respectively. An extreme case is that for an H/D exchange
reaction between HF and HCHO, the H/D fractionation
caused by DBOC (DEDBOC(HF/HCHO) = 14.850 cm�1)
will be 0.9789 (�21.4 per mil) even at 1000 K. Table 4 shows
the effect of DBOC for many organic molecules at ambient
temperature. In addition, our comparison result in Fig. 4
shows that taking the DBOC effect into account can actually
improve the accuracy of our calculations (At least for the
H-D isotope exchange reaction between NH3 and H2).
Therefore, the DBOC effect should be included at super-
cold conditions at least for some systems.

The D/H ratio has become one of the most important
issues for the evolution of the early solar system (e.g.,
Robert et al., 2000; Robert, 2010). However, the H/D frac-
tionation behaviors are much more complex than we
expected before. The temperatures of a common gas phase
H/D isotopic exchange reaction in space are often <200 K
(Robert, 2010), which means we need to treat H/D fraction-
ations from a super-cold perspective, taking account of
more quantum effects (e.g., nuclear-spin effect, inversion
splitting and DBOC) and higher-order corrections (e.g.,
vibrational anharmonicity). However, the isotope exchange
rate is extremely low so that it needs much longer time to
reach isotope equilibrium, i.e., for D/H gas-phase exchange
reaction between the H2O and H2, it needs �2 Ma to reach
equilibrium at 160 K (Lécluse and Robert, 1994). There-
fore, the kinetic isotope effects are probably more impor-
tant for such problems. Many studies (e.g., Aikawa et al.,
2012; Nixon et al., 2012) used a time-dependent chemical
model discussing the evolution of the D/H ratio for a proto
solar-nebula or molecular clouds at low temperatures, these
rate constants are crucial. However, theoretical calculations
for these constants seldom consider this correction, which
means that many theoretically calculated rate constants
may be defective (e.g., Harding and Wagner, 1989;
Karkach and Osherov, 1999; Corchado et al., 2000; Blitz
et al., 2012; Meisner and Kästner, 2016). It may cause prob-
lems for works using a time-dependent chemical model
which involving hundreds to thousands of isotopic
exchange reactions for H/D systems at low temperatures,
when try to explain the H/D ratio anomalies found by
astronomical observations in the solar system (e.g.,
Aikawa et al., 2012; Nixon et al., 2012).

The DBOC also have effect on H/D systems at ambient
temperatures according to our calculations (e.g., HF, HCl,
CH3OH and HCOOH). A previous study also showed that
inclusion of the DBOC can greatly improve the accuracy of
the calculated fractionation factor for the D2 + 2HCl = H2

+ 2DCl (Experimental value: 1.959 ± 0.011; Calculated
with DBOC correction: 1.965; Calculated without DBOC
correction: 2.017; T = 20 �C; Postma et al., 1988) reaction.

In addition, for other isotopic systems, such as 13C/12C,
15N/14N, 18O/16O and 34S/32S, the DBOC corrections can
also significantly change the fractionation factors, although
to a smaller extent. From Eq. (55), we know that EDBOC is
proportional to the mass difference of the isotopologue pair
AXH/AXL. As a result, the kDBOC for the FPFR value will
decrease as the increasing of the atomic mass. So the DBOC
correction factors for C, N, O and S systems will become
increasingly smaller. However, for these systems, this cor-
rection still can change the FPFR values to a very meaning-
ful extent. Table 9 listed the DBOC correction factors for
12 gaseous molecules containing C, N, O and S, at 50–
300 K. For 13C/12C, 15N/14N, 18O/16O and 34S/32S systems,
the DBOC corrections will still cause a few per-mil fraction-
ations at ambient temperatures and greater fractionations
under super-cold conditions. Therefore, we suggest includ-
ing the DBOC into H/D, 13C/12C, 15N/14N, 18O/16O and
34S/32S isotope fractionation calculations in future for
ambient or lower temperatures.

5.6. Nuclear-spin effect for H2

We assume that the all the spin-isomers of H2 are in
thermal equilibrium when calculating its Qrot, which means
that the ratio ortho/para- H2 is always 3:1 (The high-
temperature limit). However, the transitions between the
two spin-isomers are very slow and often take a long time
(Flower et al., 2006), let alone at super-cold conditions.
Therefore, we evaluated the effect of different ortho/para
ratio (denoted as o/p ratio hereafter) on the final calculated
FPFR value of HD/H2 pair from 50 to 300 K.

We calculated the logarithm of the Qrot ratio of the
HD/H2 pair with different o/p ratios range from 0 (all H2

molecules are para-H2) to infinite (all H2 molecules are
ortho-H2). The results are shown in Fig. 8. We find that
the effect of different o/p (ortho/para) ratios rapidly
decreases when temperature increases. When temperature
is 250 K, the calculated logarithm of the Qrot ratio changes
from 0.2658 to 0.2488 and when the temperature is higher,



Fig. 8. Calculated logarithms of the Qrot ratio of the HD/H2 pair
with different ortho/para ratio (ranges from 0 to infinite) at 50–300
K.
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this interval becomes smaller. However, when the tempera-
ture is 50 K, this interval increases, and the calculated ratio
changes from �0.5006 to 1.9412. Interestingly, the calcu-
lated Qrot ratios are positively correlated with the o/p ratios.
When the o/p ratios are relatively small (e.g., <0.5) and the
temperatures are also very low (e.g., <100 K), the corre-
sponding Qrot ratios will be smaller than unity, which
means that the isotope effect caused by molecular rotation
will show an inversed effect on the isotope fractionations
when compared with the Urey model. Light isotopes will
be enriched rather than heavy isotopes due to the molecular
rotation at such conditions.

For other molecules such as CH4, NH3 and H2O, we
think that whether their spin-isomers are in thermal equilib-
rium or not, the effect of this kind of disequilibrium on the
fractionation can be ignored. Because the nuclear-spin
effect of these molecules only become significant when the
temperatures are lower than 50 K, which is beyond our
considerations. In addition, the true distribution of
spin-isomers of these molecules are much more difficult to
evaluate than a simple diatomic molecule or H2O (Can be
easily discussed by using the o/p ratio) when thermal equi-
librium is not reached. Therefore, we only evaluated the
effect of o/p ratios for H2 here and the final calculated
FPFR values are based on the equilibrated o/p ratio (3:1).
The equilibrium fractionation factors involving other o/p
ratios for H2 can be easily determined by using the Eq. (18).

5.7. Limitations of our method and future work

There are still some limitations in our method built for
the super-cold conditions:

(1) Our method is applied to systems where the inter-
molecular forces can be ignored (i.e., a dilute gas sys-
tem), and for those processes that quantum tunneling
effect can be ignored. In addition, a relatively stable
environment with a long stagnation time (at least
� 1 Ma) is needed.
(2) Extending our theory to solid systems seems natural
due to the success of the statistic mechanics for
solids. However, to our knowledge, there is no pack-
ages can evaluate the DBOC for solids although the
theory of the DBOC has been built for decades. Per-
haps the DBOC for solids can be evaluated using a
cluster model instead.

(3) Accurate calculation of the DBOC require an accu-
rate description of the wavefunctions and their sec-
ond derivatives relative to the nuclear coordinates,
which is often too expensive (e.g., a CCSD/aug-cc-
pCVTZ or higher level calculations) to afford for
large molecules. Although there have been studies
using semi-empirical or density functional theory
(DFT) methods to deal with it, the results are still dis-
satisfactory (Mohallem, 2008; Gidopoulos and
Gross, 2014). Also, the classic method such as an
asymptotic expansion of the DBOC might also help
sometimes (Przybytek and Jeziorski, 2012). There-
fore, affordable methods are needed to fulfill the cal-
culation of DBOC for large systems.

(4) The DBOC is calculated with the precondition of
higher order non-adiabatic corrections on Born-
Oppenheimer approximation are small and nearly
cancelled when comparing the energy differences of
isotopologue pairs (Kleinman and Wolfsberg,
1973). Therefore, these higher-order non-adiabatic
corrections possibly still need to be checked in the
future for safe.

6. CONCLUSIONS

We build a theoretical method to calculate isotope frac-
tionations under super-cold conditions. The isotope frac-
tionation behaviors of such conditions are found to be
quite different from those at higher temperatures, such as
the logarithm of equilibrium fractionation factors is pro-
portional to 1/T (for all the molecules been studied here)
rather than 1/T2. The fractionation behavior of isotopes
(H, C, N, O, S and other light elements) are mainly domi-
nated by the vibrational energy differences (including the
vibrational anharmonicity). The rotational (quantum
mechanical rotation including the nuclear-spin weight),
translational (temperature-independent) and the electronic
energy differences (DBOC) can also affect the results to a
very meaningful extent. Other higher-order corrections
(such as the vibration-rotational coupling, centrifugal dis-
tortion and inversion splitting) can only provide trivial
effects.

The effect of the nuclear-spin on the isotope fractiona-
tion is significant under super-cold conditions, especially
for those molecules have wider rotational energy intervals
such as H2 and its isotopologues HD and D2. However, this
effect will rapidly vanish with increasing temperature.

The DBOC is a very important effect for isotope frac-
tionations even at ambient temperatures. It is also impor-
tant for kinetic isotope fractionation of elementary
reactions. However, this effect becomes increasingly smaller
with the order of H, C, O, N and S isotope systems. This
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study has provided a lot of isotope fractionation factors for
gaseous molecules and organic molecules with the consider-
ation of the DBOC. The magnitudes of the DBOC correc-
tions are beyond our expectation and it will become a very
important effect in future isotope fractionation calculations.
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