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A B S T R A C T

Background: Selenium hyperaccumulation in plants often involves the synthesis of non-proteinaceous methy-
lated selenoamino acids serving for the elimination of excess selenium from plant metabolism to protect plant
homeostasis.
Methods: Our study aimed at the identification of the main selenium species of the selenium hyperaccumulator
plant Cardamine violifolia (Brassicaceae) that grows in the wild in the seleniferous region of Enshi, China. A
sample of this plant (3.7 g Se kg−1 d.w.) was prepared with several extraction methods and the extracted sele-
nium species were identified and quantified with liquid chromatography mass spectrometry set-ups.
Results: The Cardamine violifolia sample did not contain in considerable amount any of the organic selenium
species that are often formed in hyperaccumulator plants; the inorganic selenium content (mostly as elemental
selenium) accounted only for< 20% of total Se. The most abundant selenium compound, accounting for about
40% of total Se was proved to be selenolanthionine, a selenium species that has never been unambiguously
identified before from any selenium containing sample. The identification process was completed with chemical
synthesis too. The molar ratio of lanthionine:selenolanthionine in the water extract was ca. 1:8.
Conclusions: Finding selenolanthionine as the main organic selenium species in a plant possibly unearths a new
way of selenium tolerance. This article is part of a Special Issue entitled Selenium research in biochemistry and
biophysics - 200 year anniversary issue, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.

1. Introduction

Metabolism of selenium in hyperaccumulator plants has been re-
viewed recently from several aspects [1–3]. Basically, selenium is up-
taken in the form of selenate that is reduced into selenite and further to
hydrogen selenide, which is metabolised into selenocysteine (Sec): this
is the amino acid to be withdrawn from the amino acid pool to prevent
the formation of dysfunctional plant proteins. The excess of this ele-
ment is diverted in basically three directions: methylation of the sele-
nium moiety in Sec yields Se-(methyl)selenocysteine, a non-proteinac-
eous amino acid derivative, that serves for further metabolism into the
volatile dimethyl diselenide. Sec can also be converted into selenoho-
mocysteine that opens the two basic other directions: one towards se-
lenomethionine and ultimately until the volatile dimethyl selenide,

while the second pathway ends up in the accumulation of selenoho-
molanthionine. Depending on the enzymatic activities, the plant species
and plant tissues serving for the deposition of selenium, these three
pathways may be also stopped or diverge to store intermediate or minor
species such as gamma-Glu-methylselenocysteine [4], selenocystathio-
nine [5], Se-(methyl)selenocysteine [6], gamma-Glu-methylseleno-
methionine [7] or even polyselenides [8]. Apart from the listed meta-
bolic pathways, genuine compounds of specific sulphur metabolisms
can also be synthesised in selenised form in considerable amounts due
to the sulphate-selenate substrate-unspecific activity of the enzymes
involved: e.g., several selenoglucosinolates could be identified in
Brassica nigra after dedicated methanolic extraction [9].

On the other hand, non-accumulator and secondary accumulator
plants can also store unaltered inorganic (selenate) or reduced
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(elemental) selenium species as an indication of exaggerated detox-
ification capacity. Therefore, when a novel plant species is considered
for selenium speciation analysis, simple methods such as the quantifi-
cation of water soluble selenium vs. total selenium content may not
clearly distinguish between a highly active selenium metabolism that
produces water soluble organic non-proteinaceous selenium species and
a non-accumulator plant with selenate accumulation. Similarly, sele-
nomethionine in hydrophobic or in denaturated plant proteins, ele-
mental selenium and selenides are all insoluble in water based buffers
and/or in water, thus no hint on metabolic pathways can be gained only
from the ratio of water insoluble selenium vs. total selenium data.

In our study, Cardamine violifolia, a species of the Cardamine genus
and of the Brassicaceae family was considered for selenium speciation.
This plant is a selenium tolerant species that is native to the highly
seleniferous region of Enshi, Hubei, China. C. violifolia has been char-
acterized with selenium content in the leaves exceeding 0.6 g kg−1 (dry
weight) and has been shown to have around 14% of selenium in the
form of water soluble proteins [10].

2. Materials and methods

2.1. Plant sample

Cardamine violifolia was identified and registered by the Wuhan
Botanical Garden (Chinese Academy of Sciences; Wuhan, China). The
sample was harvested in the natural seleniferous region Yutangba,
Enshi (Hubei Province, China). The stems and the leaves of the plants
were cleaned with deionised water, milled and lyophilised.

2.2. Reagents and standards

Heptafluorobutyric acid (HFBA; ≥99%), sodium borohydride
(≥98%), Se-(methyl)selenocysteine hydrochloride (≥95%), D,L-lan-
thionine (≥98%), L-selenocystine (95%) and formic acid (~98% for
MS) were supplied by the Merck-Sigma group (Schnelldorf, Germany).
Deionised water (18.2 MΩ cm) was obtained from a Millipore pur-
ification system (Merck-Millipore; Darmstadt, Germany). Acetonitrile
(Super Gradient Grade), and sodium sulphite (98%) were supplied by
VWR (Radnor, Pennsylvania, USA), while carbon disulphide (extra
pure), hydrochloric acid (37%), sodium selenite pentahydrate (≥99%),
ammonia solution (25%), Pronase E (4,000,000 PU g−1), hydrogen
peroxide (a.r. 30m/m%), the 1.000 g/l standards of S, Se and Rh were
obtained from Merck. Nitric acid (a.r., 65≥m/m%), formic acid
(98–100%, used for liquid chromatographic purposes), pyridine
(99.5%) and acetic acid (100%) were purchased from Scharlau
(Barcelona, Spain). Ethanol (96%), Tris(hydroxymethyl)aminomethane
(a.r.) and ammonium acetate (> 99%) were supplied by Reanal
(Budapest, Hungary). Methanol (HPLC Gradient Grade) and D,L-dithio-
threitol (≥98%) were obtained from Fisher Scientific (Loughborough,
UK). β-Chloro-L-alanine (98%) was purchased from Santa Cruz
Biotechnology (Dallas, USA). L-Selenomethionine (99+%) was ob-
tained from Acros Organics (Geel, Belgium).

2.3. Procedures

2.3.1. Total sulphur and selenium determination
Microwave digestion of the samples, extraction residues and ali-

quots of extraction solutions was carried out in a CEM Mars-5 digestion
system (CEM; Matthews, NC, USA). The samples (50mg C. violifolia;
entire extraction residues; 1.0–2.0 ml aliquots) were mixed with 5.0 ml
HNO3 in PTFE digestion tubes and after 24 h 3.0 ml H2O2 was added
prior to the microwave digestion process. The pressure was raised to
250 psi over 20min and held for 15min. Total Se concentration was
determined with an Agilent 7500ce ICP-MS (Agilent Technologies,
Santa Clara, CA, USA) on the 77Se and 82Se isotopes by the method of
standard addition using rhodium (103Rh) as an internal standard.

The total S concentration was determined with a Perkin Elmer
Optima 8000 ICP-OES instrument (Waltham, MA, USA) with external
calibration at the wavelengths of 180.669, 181.975, 182.037 and
182.563 nm.

2.3.2. Sequential extraction procedure
Sequential extraction protocol was adapted from Monicou et al.

[11]:

1. Water extraction: 0.2 g of the C. violifolia sample was extracted with
an ultrasonic probe (UP100H, Hielscher Ultrasound Technology,
Teltow, Germany) at ambient temperature. The extraction was
carried out in two steps: first with 6.0ml deionised water for 2×1
min sonication then with 3.0ml deionised water for 2×1 min. The
supernatants were recovered by centrifugation (30min at 4000g),
then they were pooled and filled up to 10.0ml. This procedure was
carried out in six replicates.

2. Sulphite extraction: 5.0ml of 1.0M Na2SO3 was added to the water
insoluble residue; the sample was vortexed and it was shaken in an
orbital shaker at 180 1min−1 for 24 h at 37 °C. The supernatants
and the residues were separated by centrifugation (30min at
4000g). The residue was washed with 4.0 ml deionised water and
the relevant supernatants (Na2SO3 and water) were pooled and
made up to 10.0ml with deionised water. This procedure was car-
ried out in three replicates.

3. CS2 extraction: this procedure was carried out with the three re-
sidues obtained after the sulphite extraction. First, 2.0 ml deionised
water was added to the residues. The samples were vortexed, then
4.0ml CS2 was added, followed by vortexing and incubating for 4 h.
The mixture was hand-shaken regularly in 20-min intervals.
Afterwards the samples were centrifuged (10min at 4000g) and
three phases were separated: the upper water phase, the plant tissue
debris and the CS2-containing layer. These three phases were treated
separately: the CS2 phase was evaporated at room temperature and
the dried-in residue was digested, while the plant debris and the
water phase were digested as they were, without evaporation.

The selenium content of the extracts and phases was determined by
ICP-MS following the HNO3-H2O2 digestion procedure.

2.3.3. Proteolytic extraction
250mg of lyophilized plant material was enzymatically digested

according to the method described by Shao et al. [12] with Pronase E in
two subsequent steps in Tris-buffered medium. The supernatant arising
from the treatments were decanted and made up to 10.0ml with
deionised water in a volumetric flask and filtered through 0.45 μm
PTFE disposable syringe filters. The entire sample preparation was
executed in three replicates.

2.3.4. Strong anion exchange (SAX) chromatography
A PRP-X100 SAX column (250mm×4.1mm×10 μm; Hamilton,

Reno, NV, USA) was applied with gradient elution made with ammo-
nium acetate (buffer A, 10mM; buffer B, 250mM; pH 6.0) delivered at
1.5 mlmin−1. The program was as follows: 0–5min, 100% A; 5–20min,
up to 40% B; 20–22min, up to 100% B; 22–25min, 100% B; 25–26min,
down to 0% B; 26–31min, 0% B. Injection volume was 100 μl. Selenite
was quantified using the method of three-point standard addition.

2.3.5. Strong cation exchange (SCX) chromatography
A Zorbax 300-SCX column (150mm×4.6mm×5 μm, Agilent)

equipped with a matching guard column was used. Gradient elution
was done with pyridine formate (pH 2.2; buffer A: 1mM; buffer B:
40mM) delivered at 1.2 mlmin−1. The program was as follows:
0–2min, 100% A; 2–15min, up to 30% B; 15–16min, up to 100% B;
16–20min, 100% B; 20–21min, 100% A. Lyophilized water extract of
the C. violifolia sample was dissolved in buffer A and filtered through a
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0.45 μm cellulose acetate filter. The injection volume was 5 μl (for
mapping purposes) or 10 μl (for fraction collection). The peak with the
highest abundance was repeatedly collected, frozen and lyophilized,
then dissolved in the proper eluent for further IP-RP-ICP-MS and LC-
ESI-QTOF-MS analysis.

2.3.6. Ion-pairing reversed phase (IP-RP) chromatography
An XTerra MS-C18 (250mm×4.6mm×5 μm; Waters, Milford,

MA, USA) column was used. The mobile phase consisted of deionised
water (eluent A) and methanol (eluent B) both containing 0.05 v/v%
HFBA. The flow rate was 0.6mlmin−1 and the gradient elution pro-
gram was: 0–2min, 5% B; 2–10min, up to 65% B; 10–15min, 65% B;
15–16min, down to 5% B; 16–22min 5% B. Injection volume was 25 μl.
Se-(methyl)selenocysteine was quantified using the method of three-
point standard addition.

All (SAX, IP-RP and SCX) chromatographic set-ups were achieved by
using an Agilent 1200 HPLC system connected to an Agilent 7500cs
ICP-MS for element-specific detection of 77Se, 82Se and 88Sr. In the case
of IP-RP hyphenation, oxygen (40mlmin−1) was used as optional gas.

2.3.7. LC-ESI-QTOF-MS set-up
For the HPLC–ESI-MS experiments, a 6530 Accurate Mass ESI-

QTOF-MS system (Agilent) equipped with an Agilent 6220 derived dual
ion spray source was applied. Chromatographic elution was provided
by an Agilent 1200 HPLC system using a Zorbax XDB C18 reversed
phase (RP) HPLC column (50mm×2.1mm×3.5 μm; Agilent).
Isocratic elution with deionised water containing 5 v/v% acetonitrile
and 0.1 v/v% formic acid was carried out at the flow rate
0.35mlmin−1. The ESI ion source was used in positive ionisation
mode. The default fragmentor voltage was 170 V in MS and 145 V in
MS/MS experiments. The other related instrumental parameters are
described in the Supplementary material (SM Table S1).

2.3.8. Chemical synthesis, purification and quantification of the
selenolanthionine standard

Selenolanthionine synthesis was based on a modified procedure
originally described by Block et al. [13]. 200mg L-selenocystine was
suspended in 5ml ethanol under argon atmosphere and 100mg solid
NaBH4 was added. The solution was refluxed for 20min, after an ad-
ditional volume of ethanol (5 ml) was added and the solution was re-
fluxed for further 20min. Then 150mg β-chloro-L-alanine was added to
the still yellowish solution that was refluxed for 10min and cooled to
room temperature. The resulting suspension was filtered, the solid re-
sidue was dried and dissolved in 0.1M HCl solution. Prior to SCX-ICP-
MS analysis and purification the solution was 300-fold diluted with
pyridine formate (1mM, buffer A for SCX), filtered through a 0.45 μm
cellulose acetate filter and injected onto the SCX-ICP-MS chromato-
graphic set-up. The amount of residual L-selenocystine was quantified
using the method of three-point standard addition to estimate the yield
of selenolanthionine synthesis.

The peak corresponding to selenolanthionine was fractionated
(50×), pooled and lyophilised. In order to determine its approximate
concentration, an isocratic SCX method was applied with a three-point
standard addition of Se-(methyl)selenocysteine as the closest eluting Se-
species, according to a method introduced by Sloth et al. [14] for ar-
senic speciation. The chromatographic system was identical as de-
scribed above for the SCX-ICP-MS analyses; the eluent was 1mM pyr-
idine formate (pH 2.2; 0–5min).

2.3.9. Quantification of lanthionine and selenolanthionine in the water
extract of C. violifolia

A QTRAP3200 triple quadrupole-linear ion trap mass spectrometer
(Applied Biosystems/Sciex; Foster City, CA, USA) was applied in MRM
(multiple reaction monitoring) mode. The instrument was coupled to an
Agilent 1100 series HPLC set-up using a Luna HILIC 200 Å
(150mm×4.6mm×5 μm; Phenomenex, Torrance, CA, USA) HPLC

column. For the gradient elution method, the mobile phase consisted of
98:1:1 v/v% deionised water/formic acid/acetonitrile (eluent A) and
98:1:1 v/v% acetonitrile/formic acid/deionised water (eluent B). The
flow rate was 0.8mlmin−1 and the gradient elution was performed as
follows: 0–1min 10% A, 1–10min linear gradient up to 90% A,
10–11min 90% A, 11–12min linear gradient down to 10% A,
12–20min 10% A. The injection volume was 5 μl and the column was
kept at 25 °C.

The instrument was optimized in positive MRM mode for lanthio-
nine and selenolanthionine by introducing a 2mg l−1 stock solution of
each compound containing acetonitrile/water/formic acid (60:39:1; v/
v%) with the help of a syringe pump at the flow rate of 10 μl min−1.
Lanthionine was monitored with the precursor ion set at m/z 209, while
the transitions were set for 209/74, 209/120, and 209/146, with the
quantifier product ion at m/z 120. The precursor ion for seleno-
lanthionine was set to m/z 257 for the transitions at 257/168, 257/140,
and 257/74, showing the most intensive (quantifier) product ion at m/z
168. The optimal parameters and other related instrumental data are
described in the Supplementary material (SM Table S2).

3. Results

3.1. Total selenium and sulphur contents and selenium distribution

Total Se concentration was found to be 3.7 ± 0.2 g Se kg−1 d.w. in
the C. violifolia sample, which basically ranks this plant among the
hyperaccumulator species. The concentration of sulphur was
15.2 g S kg−1 d.w., which can be found in the range of sulphur accu-
mulation of another selenium hyperaccumulator Brassicaceae species,
e.g., Stanleya pinnata var. pinnata (14.0–19.3 g S kg−1 d.w.; [15]), Si-
napis alba, Brassica arvense, B. oleracea, and B. juncea
(12.9–21.8 g S kg−1 d.w.; [16]). However this high ratio of Se:S
(0.24:1 m/m; 1:10molar ratio) is unusual among the known Brassica-
ceae species and may relate to an exceptional selenium uptake, S and Se
concentration data of the soil would be required to assess the relevant
Se enrichment factor.

The distribution of selenium among different fractions is shown in
Fig. 1. The aqueous extract was found to contain 60 ± 1.5% of Se
originally present in the sample, while the cumulated amount of
Na2SO3 extract (assigned as elemental selenium) and CS2 extract (as-
signed as selenides) accounted for approximately 18% of the total Se
content. There are different observations in the literature discussing the
extraction efficiency and selectivity of Na2SO3 and CS2 solvents in case
of elemental selenium and selenides [17–20]; however, the consider-
able (16%) elemental selenium content is a feature of secondary and

0 10 20 30 40 50 60

water soluble

Na2SO3 extract

CS2 extract

unsoluble

Se content, %
Fig. 1. Distribution of selenium in the C. violifolia sample on the basis of the sequential
extraction procedure. Error bars indicate± 1 standard deviation.
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non-accumulator plants such as garlic [11] and Black-eyed Susan
/Thunbergia alata/ [17]. This indicates C. violifolia might be listed
among the secondary accumulators. It must be noted that the high
fraction of elemental Se does not inherently exclude this Cardamine
species out of the hyperaccumulators, as some Astragalus and Stanleya
hyperaccumulator species have been shown to contain up to 35% of
total Se content in this form [21]. Although, in this latter case, the high
elemental Se fraction was found in the roots, not in the stem and leaves,
and it was attributed to the microbial activity of endophytic bacteria or
fungi.

The overall recovery was 88%. The missing amount from the mass
balance can be attributed to the physical loss observed during the la-
borious collection of the CS2 phase and therefore might be assigned as
insoluble selenium after the triple stage extraction process.

3.2. Chromatographic characterization procedures

The high water-soluble selenium content, together with the con-
siderable elemental selenium concentration can refer to the accumu-
lation of inorganic (anionic) selenium species, selenate and selenite,
therefore strong anion exchange chromatography (SAX) is a viable
option for further characterization. As presented in Fig. 2a, the water-
soluble fraction of C. violifolia contained only a negligible amount of
selenite (48 μg g−1 as Se) that accounts for only 1.3% of total selenium.
Also, the SAX-ICP-MS chromatogram indicates that most of the soluble
selenium compounds are either cationic or neutral at the pH of the
separation (pH 6.0).

Efficient separation of selenoamino acids and their derivatives
arising from proteolytic extracts on ion-pairing reversed phase chro-
matography (IP-RP) is a well-established method [22] and it has also
been chosen in our study. Fig. 2b shows the elution of the proteolytic
extract together with the indication of the elution time of Se-(methyl)
selenocysteine and selenomethionine. Only the amount of Se-(methyl)
selenocysteine could be quantified (13 μg g−1 as Se; around 0.4% of

total selenium) while selenomethionine was detected in traces. The two
most abundant peaks could not be identified with any of the available
standards with retention time matching; however, useful information
could be gained as the two peaks showed retention with the anionic ion
pairing agent used in the study (HFBA) at the acidic pH of the elution
(pH < 3).

Therefore, the aqueous extract of the C. violifolia sample was then
analysed with cation-exchange chromatography (Fig. 2c), showing one
dominant peak at the retention time of 3.7 min and several minor ones.
Finally, repeated fraction collection was carried out for the major peak
to achieve a compound adequately pure for LC-ESI-QTOF-MS based
identification. The collected and pooled fraction of the dominant peak
was re-analysed and re-fractionated with the IP-RP chromatography
(Fig. 2d), which indicated that the fraction indeed consists of mostly
one compound.

3.3. Identification of selenolanthionine by HPLC-ESI-QTOF-MS and -MS/
MS

The fraction of the dominant peak in the IP-RP chromatogram was
introduced into the ESI-QTOF-MS instrument by the means of an RP-
HPLC system. Two selenium-containing components with the mass to
charge ratios (m/z) 257.0032 and 167.9555 were found in the chro-
matogram by visual seeking for the characteristic selenium isotopic
pattern: Fig. 3 shows the recorded full scan spectrum, together with the
inset of the selenium-containing isotopic pattern. As it was supposed
that the ion at m/z 167.9555 is the in-source fragment of the compound
with m/z 257.0032, extracted ion chromatograms (EIC) of both com-
pounds were prepared (Fig. 4), showing the matching of the two ions.
The correspondence was also proved by decreasing the fragmentor
potential of the ion source from 170 V to 150 V, which practically
eliminated the in-source fragment.

The elemental composition calculating tool of the instrument, to-
gether with the information that the molecule carries one selenium
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Fig. 2. (a) Strong anion exchange (SAX)–ICP-MS chromatogram of the C. violifolia water extract. The arrow indicates the retention time of selenite. (b) Ion-pairing reversed phase (IP-
RP)–ICP-MS chromatogram of the C. violifolia water extract. The solid arrow indicates the retention time of Se-(methyl)selenocysteine, while the dashed arrow points at that of
selenomethionine. (c) Strong cation exchange (SCX) – ICP-MS chromatogram of the C. violifolia water extract. The dashed line indicates the fraction collected for further analysis. (d) IP-
RP–ICP-MS chromatogram of the fraction collected from the SCX chromatographic set-up.
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atom, found only one possible composition within 5 ppm
(C6H13N2O4Se+; theoretical m/z 257.0035, Δ=− 1.16 ppm; calcula-
tion settings are presented in SM Table S3). This composition, together
with the observation of Block et al. [13] about the most significant
fragment detected at m/z 168, indicates this molecule is seleno-
lanthionine, a selenium species that has never been identified with
unambiguous (at least electrospray mass spectrometry based) techni-
ques before from any kind of selenium containing sample. Up to now,
only one record on selenolanthionine has been published: Kotrebai
et al. [23] assigned this species from selenized yeast in an HPLC-ICP-MS
chromatogram on a shoulder of an eluting selenium containing peak
with retention time matching.

For the further confirmation of the compound identity, an MS/MS
experiment was carried out on the 80Se and 77Se isotope containing
isotopologues. The results are shown in Fig. 5 and in Table 1.

However the isotopic pattern, the accurate mass data, the frag-
mentation pattern and the cationic chromatographic behaviour [24] all
confirm the identity of this compound, the obvious lack of relevant
scientific reports requires a higher level of verification, especially in the
light of the fact that only the derivatives of selenolanthionine have been
clearly identified from selenium containing plant [25] and yeast [26]
samples. Therefore, it was found necessary to confirm the identification
by the chemical synthesis of selenolanthionine as well.

3.4. Confirmation of the identification of selenolanthionine by chemical
synthesis

As the synthesis described by Block et al. [13] could not be com-
pletely reproduced, the synthetized material had to be analysed to
achieve yield and purity data. The SCX-ICP-MS chromatogram (Fig. 6)
shows that the synthetic product contained several selenium species in
the mixture. The highest peak eluting at 5.3min was identified as re-
sidual selenocystine based on retention time matching. The con-
centration of selenocystine was determined, which indicated that about
70% of this compound did not react, showing a yield of ≤30% for the
selenolanthionine synthesis.

The synthetized compound eluting at 4.3min (supposed to be se-
lenolanthionine) was acquired with repeated fraction collection steps
and it was first used for spiking the aqueous extract of the C. violifolia
sample. As presented in Fig. 7, the SCX-ICP-MS chromatogram showed
exact retention time matching with the peak of the previously identified
selenolanthionine.

Afterwards, the synthetized compound and the C. violifolia extract
spiked with the synthetized compound were analysed by the RP-LC-ESI-
QTOF-MS in MS and MS/MS experiments. In the full-scan spectra the
m/z 257.0038 and m/z 167.9557 ions could be found showing the se-
lenium-containing isotopic pattern, and the MS/MS fragments showed
matching with those detected from the C. violifolia extract (Fig. 8). The
extracted ion chromatograms of selenolanthionine and its in-source
fragment also showed matching in the spiked extract of C. violifolia
(Fig. 9), which corresponds to another, orthogonal verification to the
previous strong cation exchange chromatography.

It has been reported that C. hupingshanesis (an alternative name of C.
violifolia) contains selenocystine and not selenolanthionine [27], which
in that case would be in contrast to our results. These divergent results
may possibly be explained by the fact that the prior report had analysed
root samples as well while here we focused on stem and leaves. Alter-
natively, and perhaps more likely, it may also be that the HPLC method
(that is, strong anion exchange at pH=6.0) alone used in the prior
report cannot easily separate selenocystine from selenolanthionine.
That methodological challenge has indeed been discussed previously
[28]. Because we have here used several complementary methods for
analyses, including HPLC-ESI-QTOF-MS and chemical synthesis, we
believe that our identification of selenolanthionine as the major meta-
bolite should be reliable.
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selenolanthionine and its in-source fragment in the insets. Masses highlighted in bold refer to the 78Se, 80Se and 82Se isotopologues. The mass with m/z 166.0835 arrives from an
interference on the 78Se isotopologue of the in-source fragment.
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3.5. Quantification of lanthionine and selenolanthionine in the water
extract of C. violifolia

Up to now, no information has been available on the lanthionine
concentration in plants. On the other hand, the ratio of the sulphur and
selenium analogues provides useful data on the bioaccumulation pro-
cess, which – together with the total S and Se concentration – may give
a hint about selenium metabolism [29].

As lanthionine standard is commercially available and seleno-
lanthionine has been synthesised, the selective quantification of these
two non-proteinaceous and cationic amino acids can be simultaneously
carried out with hydrophilic interaction liquid chromatography (HILIC)
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Fig. 5. (a) HPLC-ESI-QTOF-MS full scan spectrum of selenolanthionine prior to MS/MS analysis. The inset shows the isotopologue pattern, together with the fragmented ions highlighted
in bold. (b) HPLC-ESI-QTOF-MS/MS collision induced dissociation (CID) spectrum of selenolanthionine fragmented on the 77Se isotopologue.

Table 1
MS/MS fragmentation data of selenolanthionine purified from C. violifolia water extract.

Composition Theoretical mass, m/z Experimental mass, m/z Δ, ppm

C6H13N2O4(80Se)+ 257.0035 257.0037 0.78
C6H13N2O4(77Se)+ 254.0068 254.0081 5.12
C3H6NO2(80Se)+ 167.9558 167.9551 −4.17
C3H6NO2(77Se)+ 164.9592 164.9590 −1.21
C2H6NO(80Se)+ 139.9609 139.9606 −2.14
C2H6NO(77Se)+ 136.9642 136.9643 0.73
C2H4NO2

+ 74.0236 74.0246 13.5
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Fig. 6. SCX – ICP-MS chromatogram of the synthesised selenolanthionine standard after
100× dilution of the final reaction mixture. The peak eluting at 5.3 min refers to residual
selenocystine, while selenolanthionine eluted at 4.3min.
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Fig. 7. SCX – ICP-MS chromatograms of the C. violifolia water extract (lower chromato-
gram) and that of the water extract spiked with the synthesised selenolanthionine stan-
dard (upper chromatogram).
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coupled to electrospray ionisation-triple quadrupole - mass spectro-
metry (ESI-Q3-MS). Fig. 10a and b show the chromatograms of the two
analytes; no considerable interferences could be observed at the mon-
itored MRM transitions. The concentration of selenlanthionine was
4.8 mg g−1 sample (that is equal to 1.5mg Se g−1) while lanthionine
was present at 0.5mg g−1. These results refers to an about 1:8 molar
ratio of lanthionine and selenolanthionine, which far exceeds the sub-
stitution rate for selenomethionine in the hyperaccumulator plant Le-
cythis minor seeds (1:2 for methionine:selenomethionine; [29]) and
even more exceeds the quantified S:Se molar ratio of 10:1. However the
quantification of selenolanthionine might be slightly biased due to the
use of a non-commercial standard, it can be stated that selenolanthio-
nine provides approximately 68% of selenium of the water-soluble
fraction of C. violifolia and it accounts for about 40% of total selenium
content. Such a high relative quantity for any non-proteinaceous

selenium compound has been reported only for Se-(methyl)selenocys-
teine and γ-Glu-Se-(methyl)selenocysteine [1, 30].

4. Discussion

To the best of our knowledge, there have not been any known se-
lenium related metabolic pathways that would include selenolanthio-
nine. Basically, as this compound is a non-proteinaceous amino acid, it
can fulfil the role of eliminating selenium, or, more directly, seleno-
cysteine from being incorporated in plant proteins.

Concerning the chemical reactions potentially involved, lanthionine
is known to be formed at high temperature at alkaline pH [31], or when
samples with high protein content are exposed to high temperature in
wet atmosphere for several hours (e.g., for 4 h at 130 °C with excess
water) [32]. In the case of yeast and the 2,3-DHP-selenolanthionine
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Fig. 8. (a) HPLC-ESI-QTOF-MS full scan spectrum of the synthesised selenolanthionine prior to MS/MS analysis. (b) HPLC-ESI-QTOF-MS/MS collision induced dissociation (CID)
spectrum of the synthesised selenolanthionine fragmented on the 77Se isotopologue.
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Fig. 9. EICs of the ions m/z 257.003 (lower line) and m/z 167.955
(upper line) from the C. violifolia water extract spiked with the
synthesised selenolanthionine standard.
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derivative, an oxidative cleavage process was proposed to form sele-
nolanthionine, e.g., from a diselenide bridge containing metabolite,
followed by a structural rearrangement [33] due to the sterilization
related heat treatment. Evidently, none of these processes was con-
cerned during sample treatment and preparation. Also, no selenocystine
was detected in the Cardamine samples to support this theory.

Clearly, a comprehensive study dealing also with enzyme expression
levels, biochemical aspects and the higher coverage of assigned sele-
nium species are required to state if the outstanding level of seleno-
lanthionine in C. violifolia belongs to a novel metabolomic process in
selenium tolerance and accumulation.
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Fig. 10. (a) HILIC-ESI-Q3-MS chromatogram of selenolanthionine from the C. violifolia water extract (MRM transition 257→ 168; retention time: 6.77min). (b) HILIC-ESI-Q3-MS
chromatogram of lanthionine from the C. violifolia water extract (MRM transition 209→ 120; retention time: 6.83min).
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