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part of terrestrial sinks andmissing sink.

• CCS amounts to nearly 75% of net forest
sink have huge contribution to carbon
budget.

• Tropical rainforest climate owns the
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• Global new production of multi-years'
CCFS maps in a spatial resolution of
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• Separately carry out national measure-
ment of 142 countries or regions for CCS
⁎ Corresponding author.
E-mail address: baixiaoyong@vip.skleg.cn (X. Bai).

https://doi.org/10.1016/j.scitotenv.2018.06.196
0048-9697/© 2018 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 April 2018
Received in revised form 23 May 2018
Accepted 15 June 2018
Available online xxxx

Editor: R Ludwig
Themagnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink
(CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will
directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal
resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable ma-
chine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of
0.89± 0.23 petagrams of carbon per year (Pg C yr−1), amounting to 74.50% of global net forest sink and accounting
for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that
Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes
maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low
latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The
greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha−1 yr−1, for 2000 to 2014 was contributed by tropical
rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing
amagnitude of 0.26 tC ha−1 yr−1. This research estimated themagnitudes, spatial distributions, variations and con-
tributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability
way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the
global missing sink and that can help us further reveal and support our understanding of global rock weathering
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carbon sequestration, terrestrial carbon sink systemand global carbon cycle dynamicswhichmake our understand-
ing of global change more comprehensive.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Slight variations in the global or regional carbon cycles and budget
can cause significant fluctuations of atmospheric CO2 concentrations,
which further affects the stability of the global climate (Raupach,
2011). Hence, controlling climate change by restricting global green-
house gases requires a profound understanding of the mechanisms of
the global carbon cycle, including its sources and sinks and their global
spatiotemporal distributions and changes. However, the sources, mag-
nitudes, variations, and locations of the terrestrial sinks (TCS) remain
uncertain (Pan et al., 2011). To solve these problems, scientists have
performed many studies. The Intergovernmental Panel on Climate
Change (IPCC) estimated that the uptake by terrestrial ecosystems
ranged from 1.9 to 2.3 ± 1.3 Pg C yr−1 from the 1980s to the 1990s
(Watson et al., 2000). More studies have estimated a terrestrial C sink
in the range of 0.3 to 4.8 Pg C yr−1 in these two periods (House et al.,
2003; Melnikov and O'Neill, 2006). For the 2000s, studies
(Landschutzer et al., 2014; Poulter et al., 2014) have shown that this
sink was approximately 2.6 Pg C yr−1. To determine the sources of the
terrestrial sink, many scholars have made outstanding contributions,
but previous studies have mainly focused on the forest carbon sink, ag-
ricultural soil erosion sink, etc. One study (VanOost et al., 2007) showed
that the agricultural soil erosion sinks range from 0.06 to 0.27 Pg C yr−1

and is not an important sink for the global carbon cycle. However, even
if the net forest carbon sink is cut from the terrestrial sink system, the
global carbon cycle is still unbalanced, leaving the familiar problem of
the missing carbon sink (Schindler, 1999; Nilsson et al., 2003).

Traditional theories stated that the dissolution of carbonate cannot
produce carbon sinks; however, increasing numbers of studies showed
that the dissolution mechanism of carbonate rocks will produce carbon
sinks in the short and long terms due to the global water cycle and bio-
genic functions such as the photosynthetic uptake of aquatic organisms
(Pokrovsky et al., 2005; Liu et al., 2011; Martin, 2017; Shen et al.,
2017). Based on this, many scholars thought that the CCS is an important
component of the global carbon sink system (Yuan, 1997; Liu and Zhao,
2000;Martin et al., 2013) andmay be the source of themissing sink (Liu
and Dreybrodt, 2015). However, the magnitudes, spatiotemporal distri-
butions and variations of the global total CCS and CCSF in carbonate
zones still remain uncertain. Hence, fully understanding the sources of
terrestrial carbon cycle ecosystems, the magnitudes and spatiotemporal
distributions, variations and contributions to the global carbon budget of
CCS and CCSF is of great significance for more reasonable and effective
controls of global climate change which are this study's objectives.

Here, based on high spatiotemporal resolution ecological, meteoro-
logical raster data and chemical fieldmonitoring data, combining highly
reliable machine learning algorithm with the thermodynamic dissolu-
tion equilibrium model, we presented new estimates of the CCS and
CCSF from 2000 through 2014 in the global carbonate rock outcrops.
For a full understanding of the distribution and variation characteristics
of the CCS, we subdivided the global carbonate rock outcrops into clas-
sification systems of continents, regions and countries, and based on
this classification, we presented statistics and analyses of their CCS
values. We advanced our analyses by reporting the spatial distributions,
past trends and variation characteristics of the CCSF across regions, cli-
mate zones and latitudinal zones based on our estimated maps of the
CCSF at a spatial resolution of 0.05°. In addition, to illustrate the correct-
ness and importance of the CCS, we compared our estimates with other
studies in the same field and with the net forest sink for further discus-
sions of their contributions to the global carbon budget.
2. Material and methods

2.1. Material

With the purpose of calculating the long-term global CCS and CCSF
in global carbonate rock outcrops more accurately, we utilized many
global initial data including daily land surface maximal and minimal
temperature (°C), daily total precipitation (mm/d), MODIS MOD16
global terrestrial evapotranspiration and field monitoring Ca2+ concen-
tration date. In addition, we used global climate classification data and
region boundaries to analyze the spatial distribution characteristics of
CCS and CCSF.

Global climate classification data is basically based on the most fre-
quently used updated KÖPPEN-GEIGER world map of climate classifica-
tion (Rubel and Kottek, 2010) (http://koeppen-geiger.vu-wien.ac.at/)
which is based on recent data sets from the Climatic Research Unit
(CRU) of the University of East Anglia and the Global Precipitation Cli-
matology Centre (GPCC) at the GermanWeather Service.

Carbonate rock outcrops are based on the v3.0 revision worldmap of
carbonate rock outcrops from Geography and Environmental Science,
University of Auckland (http://www.sges.auckland.ac.nz/sges_research/
karst.shtm), which is in greater detail than the last two versions. In addi-
tion, the region boundaries are also from their database. The area of car-
bonate rock outcrops provides an upper limit on the area of exposed
karst terrain. Extensive karstified carbonate rock also exists in sub crop,
but is hard to map. Hence, here we only considered the carbonate rock
outcrops.

The MODIS MOD16 global terrestrial evapotranspiration datasets
(E) are gathered from Climate Office of Montana University (http://
climate.umt.edu/products/evapotranspiration/), which are estimated
using Mu et al.'s improved ET algorithm (Mu et al., 2011) based on the
Penman-Monteith equation. The improved E estimates were testified
to capture themagnitudes of the Emeasurements better than the previ-
ous version.

Global temperature data and global unified precipitation data are
provided by the Climate Prediction Center (CPC) of National Oceanic
and Atmospheric Administration (NOAA/OAR/ESRL PSD, Boulder, Colo-
rado, USA) from their website (http://www.esrl.noaa.gov/psd/).

We utilized N20 years' chemical field monitoring data accumulated
by many scientific workers in our team which can be obtained by
contacting with the corresponding author. The Ca2+ concentration is
monitored in karst observation station (Muzhudong point, Pudding
Karst Observation Station, Guizhou, China) 3 to 4 times per month
from January 1981 to December 2001 (Table 1).

2.2. Data processing methods

To estimate accurate CCS and CCSF, many methods were used. First,
we assimilated all of the initial spatial data sets (precipitation (P), tem-
perature (T), evapotranspiration (E)) to the same spatial-temporal scale
(0.05°, monthly from 2000.1 to 2014.12) by a convolution model
(Evensen, 2013). Then, we used the maximal information coefficient
(MIC) (Reshef et al., 2011) to precisely quantify the correlations be-
tween the Ca2+ concentration and the P and T. Based on these quantita-
tive relationships, the random forest method (RF) (Breiman, 2001) was
utilized to establish the regression model of the Ca2+ concentrations
and the P and T. Based on this regression model and the global P and T
data sets, we calculated the global spatial ionic activity coefficient distri-
bution maps of Ca2+. After assimilating all the basic data, we used the

http://koeppen-geiger.vu-wien.ac.at/
http://www.sges.auckland.ac.nz/sges_research/karst.shtm
http://www.sges.auckland.ac.nz/sges_research/karst.shtm
http://climate.umt.edu/products/evapotranspiration
http://climate.umt.edu/products/evapotranspiration
http://www.esrl.noaa.gov/psd/


Table 1
Materials sources information.

Parameters Time span Temporal resolution Sources

Precipitation (P) 2000.1–2014.12 Daily total NOAA CPC
Temperature (T) 2000.1–2014.12 Daily NOAA CPC
Evapotranspiration (E) 2000.1–2014.12 Monthly sum Montana University
Ca2+ concentration 1981.1–2001.12 3 times per month Monitoring station
Region boundaries Present / University of Auckland
Carbonate rock outcrops Present / University of Auckland
Climate classification Present / University of Veterinary Medicine Vienna
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thermodynamic dissolution equilibrium model for carbonate zones
(Gaillardet et al., 1999; Zeng et al., 2016) to calculate the global carbon
sinks produced by the dissolution mechanism (CCS) in the global car-
bonate zones.

2.3. The maximal information coefficient (MIC)

MIC belongs to a larger class of maximal information-based non-
parametric exploration (MINE) statistics for identifying and classifying
relationships. It can not only quickly identify interesting associations
of data sets but also characterize them according to properties such as
nonlinearity and monotonicity. MIC is based on the idea that if a rela-
tionship exists between two variables, then a grid can be drawn on
the scatterplot of the two variables that partitions the data such that it
encapsulates their relationship (Reshef et al., 2011). Then dynamic pro-
gramming is used to achieve the largest possible mutual information in
all the segmentation solutions. By normalizing and filtering, a final MIC
of between 0 and 1 is derived.We used theMIC to precisely quantify the
correlation between the Ca2+ concentrations and the P and T.

2.4. Random Forest regression (RF)

Combiningbaggingpredictors and stochastic subspace identification
(Breiman, 1996), Breiman proposed the random forest algorithm (RF)
(Breiman, 2001). Using the resampling method of bootstrapping, RF
creates tree structured classifiers via independent and identically dis-
tributed random vectors, i.e., RF randomly draws quantitative samples
as training samples, deriving replacements from the original data set.
Then, RF builds decision tree models for each training sample set. By
voting for or calculating the average values of the predictions of multi-
ple decision trees, themodel derives thefinal classification or regression
results.When the variables are numerical types, themodel presents the
final regression result by calculating the mean value of the predictions.

A large number of theoretical and practical studies have proved that
the RF algorithmhas high accuracy and stability, owning good tolerance
for abnormal value and noise and hardly to over fit (Rodriguez-Galiano
et al., 2014). The RF has gotten somany positive evaluations in machine
learning, data mining andmany fields (Verikas et al., 2011; Zhang et al.,
2017). Also, Fernandez et al. evaluated 179 classifiers algorithms, the re-
sults showed that RF is the most outstanding one among these algo-
rithms (Fernandez-Delgado et al., 2014).

Based on the quantitative relationships between the Ca2+ concen-
tration and the P andT,we used the RFmodel and the global P and T ras-
ter data sets to calculate the distribution maps of the spatial ionic
activity coefficient of Ca2+ in the global carbonate zones at a spatial
Table 2
Coefficients of the formulas for the Ki factors and Tk.

A B C D F

Ks −171.9065 −0.077993 2839.3191 71.595
K1 −356.3094 −0.06091964 21,834.37 126.8339 −1,684,915
K2 −107.8871 −0.03252849 5151.79 38.92561 −563,713.9
resolution of 0.05°. In this study, we built the pixel based RF regression
model according to the following steps.

First of all, we created the tree structure regression classifier, with
the form of {h(X, Θt), t = 1,…,p}, consisted of independent and identi-
cally distributed random vector (Θt). Then, by quantificationally and
randomly sampling with replacement from the training data set
consisted of Ca2+ concentration in aquifer, P and T, we built a certain
amount of independent decision trees. The randomly sampled training
data set (Xi, Yi) ismutually independent. Finally, by calculating the aver-
age value of all trees' calculation results of data set that needed for pre-
diction, we got the final prediction of Ca2+ concentration in each pixel.
For data set of X that needed for prediction,we used the following equa-
tion to calculate the corresponding Ca2+ concentration (Yk):

Yk ¼ argave ∑N
i hi xkj f ið Þð Þ

� �
ð1Þ

where Yk is the prediction result of the kth sample set, arg ave(·) is av-
eraging algorithm, hi(·) is the calculation result of the ith regression
tree, xk|(·) is the kth input sample set.

Then, the accuracy of the model's prediction result is described by
the mean square value of generalization error of the vector h(X) that
need to be forecasted, which is calculated by Eq. (2):

EX;Y Y−h Xð Þð Þ2 ð2Þ

where Y is the actual Ca2+ concentration of the training set X, h (X) is
the predicted concentration of X. EX,Y(·)2 represents the following
equation:

EX;Y �ð Þ2 ¼ 1
n
∑n

t¼1 �ð Þ2 ð3Þ

In detail, the accuracy of the model was calculated by the mean
squared error of data (out of bag, OOB) that didn't participate in the
model training (MSEOOB):

MSEOOB ¼ n−1∑n
i¼1 yi−ŷOOBi

� �2
ð4Þ

where yi is the ith actual Ca2+ concentration of OOB, ŷOOBi is the pre-
dicted value.

Besides, the model used another parameter which is called the per-
centage of explained variance (PVE) to evaluate the generalization abil-
ity of the model, which is calculated by the following equation:

Rrf
2 ¼ 1−

MSEOOB

δ̂y
2 ð5Þ

where δ̂y
2
is the total variance of the predicted result for OOB.

2.5. The thermodynamic dissolution equilibriummodel for carbonate zones

Based on the usual equations for the dissolution of calcite at equilib-
rium given in (6), Gombert created the thermodynamic dissolution
equilibrium model of Eq. (7) for carbonate zones with the assumption



Fig. 1. Region boundaries, carbonate rock outcrops and climate classification. The abbreviations represent Tropical Rainforest, Tropical Humid, Tropical Monsoon, Subtropical Humid,
Temperate Maritime, Temperate Monsoon, Temperate Continental, Tropical Savanna, Mediterranean, Semiarid, Tropical Arid, Plateau, Subarctic Continental, Polar, Tundra, Ice Sheets
respectively. The carbonate outcrops presented here are all assumed to be calcite.
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that the chemical reactions were at equilibrium in the local hydrologi-
cal, meteorological and geochemical conditions (Gaillardet et al., 1999;
Zeng et al., 2016).

CaCO3 þ CO2 þ H2O⇌Ca2þ þ 2HCO3
− ð6Þ

Dmax ¼ 106 P−Eð Þ Ca2þ
h i

eq

¼ 106 P−Eð Þ KsK1K0=4K2γ Ca2þð Þ3
� �1=3

pCO2ð Þ1=3 ð7Þ

In Eq. (7), Dmax is the dissolution flux of calcite (mol km−2 yr−1).
Traditionally, due to the lack of high spatial-temporal resolution basic
data (P, T, E, etc.) and high computational complexities, we usually
use the cumulative data of the whole year from the limited field sta-
tions, which will lead to the poor spatiotemporal representativeness
Table 3
Global annual average and multi-annual average carbon sink fluxes of the carbonate carbon si

Climate types Annual average CCSF and multi-annual average CCSF (tC ha−1

2000 2001 2002 2003 2004 2005 2006

Tropical rainforest 2.29 1.85 1.30 1.90 1.53 1.95 1.95
Tropical monsoon 1.57 1.60 1.15 1.41 1.08 1.71 1.32
Subtropical humid 1.20 1.09 1.32 0.98 1.08 0.97 0.98
Tropical savanna 1.53 1.02 1.11 1.03 1.08 1.06 1.20
Tropical humid 1.14 0.87 0.87 0.83 0.76 0.90 0.86
Temperate maritime 1.07 0.76 0.99 0.57 0.62 0.69 0.85
Temperate continental 0.88 0.77 0.73 0.87 0.80 0.69 0.82
Temperate monsoon 0.83 0.62 0.70 0.79 0.69 0.70 0.75
Plateau 0.67 0.69 0.62 0.73 0.67 0.68 0.61
Mediterranean 0.69 0.74 0.78 0.72 0.60 0.76 0.51
Subarctic continental 0.68 0.62 0.57 0.61 0.56 0.71 0.75
Polar 0.66 0.54 0.44 0.69 0.52 0.64 0.65
Semiarid 0.60 0.52 0.50 0.54 0.54 0.52 0.55
Tundra 0.63 0.44 0.27 0.44 0.40 0.38 0.16
Tropical arid 0.26 0.19 0.24 0.30 0.25 0.21 0.32

The above climate types are modified by the updated KÖPPEN-GEIGER world map of climate c
tribution so there's no CCSF in this climate. According to the above CCSF in global climate types,
the magnitude of 0.87 tC ha−1 yr−1.
and expandability of the estimates. After solving this problem by using
high spatial-temporal resolution basic data (monthly data at a spatial
resolution of 0.05°) and better analysis and processing technologies
(with python programming andGIS platforms),we derived the cumula-
tive annual average Dmax by calculating themonthly Dmax from January
2000 to December 2014. Therefore, the basic data sets below are all
given at a monthly scale. P and E are the monthly total precipitation
and evapotranspiration (mm m−1). Ks represents the calcite solubility
constant with K1 being the equilibrium constant of the CO2 hydration
and dissociation with the formation of bicarbonate ions. K0 is the equi-
librium constant of the CO2 dissolution in water with K2 representing
the equilibrium constant of carbonate ion formation. γ(Ca2+) is the ac-
tivity coefficient of Ca2+ in solution. pCO2 represents the partial pres-
sure of CO2 inside the aquifer (atm). For similar reasons, previous
studies usually use constant Ki (i = s, 1, 2, 0) values at normal atmo-
spheric temperature (15 °C), which will lead to some biases. The Ki
nk (CCSF) (tC ha−1 yr−1) in different climate types from 2000 to 2014.

yr−1) in different climate types

2007 2008 2009 2010 2011 2012 2013 2014 Mean

2.17 2.92 1.78 2.81 2.50 2.18 2.54 1.95 2.11
1.55 1.68 1.40 1.76 1.88 1.79 2.00 1.41 1.55
1.06 1.29 1.01 1.18 0.95 1.10 1.10 1.23 1.10
1.12 0.99 0.93 1.10 1.04 0.88 0.96 0.77 1.05
1.17 0.92 0.83 1.20 1.31 1.23 1.05 1.22 1.01
0.86 0.93 0.96 0.96 0.84 1.09 0.66 0.92 0.85
0.74 0.88 0.98 0.88 0.78 0.80 0.64 0.70 0.80
0.81 0.69 0.95 0.98 0.88 0.85 0.78 0.75 0.79
0.68 0.76 0.65 0.76 0.74 0.72 0.71 0.77 0.70
0.62 0.58 0.83 0.86 0.54 0.84 0.50 0.87 0.70
0.75 0.73 0.66 0.67 0.65 0.62 0.55 0.68 0.65
0.70 0.61 0.68 0.70 0.57 0.58 0.45 0.53 0.60
0.54 0.53 0.54 0.62 0.60 0.56 0.54 0.55 0.55
0.37 0.41 0.43 0.38 0.45 0.36 0.59 0.33 0.40
0.27 0.26 0.27 0.29 0.33 0.26 0.26 0.21 0.26

lassification (Rubel and Kottek, 2010). The Ice Sheets climate has no carbonate zones dis-
we calculated themulti-annual CCSF of global carbonate outcrops from 2000 to 2014with



Fig. 2.Distribution relationships of Ca2+ concentration in aquiferwith T, P and percentage errors of fitted Ca2+ concentration by RFmodel. (A) shows the distribution relationships among
Ca2+ concentration, monthly average temperature and monthly total precipitation from January 1981 to December 2001 and (B) represents the percentage errors of fitted Ca2+

concentration by RF model with parameters of monthly average temperature and monthly total precipitation from Jan 1981 to Dec 2001.
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factors are extremely sensitive to temperature changes (Plummer and
Busenberg, 1982) and are functions of temperature (Tk in the Kelvin
temperature scale) (Table 2).

log Ksð Þ ¼ Aþ BTk þ C=Tk þ Dlog Tkð Þ ð8Þ

log K1ð Þ ¼ Aþ BTk þ C=Tk þ Dlog Tkð Þ þ F=Tk
2 ð9Þ

log K2ð Þ ¼ Aþ BTk þ C=Tk þ Dlog Tkð Þ þ F=Tk
2 ð10Þ

K0 ¼ 1:7� 10−4=K1 ð11Þ

The ionic activity coefficients of Ca2+ are calculated by the Debye-
Hückel equation (Plummer and Busenberg, 1982).

log γið Þ ¼ −AZi
2

ffiffi
I

p

1þ Bai
ffiffi
I

p ð12Þ

where Zi is the ionic electric charge of Ca2+, ai represents the ionic ra-
dius of Ca2+, which is 6 Å (Dreybrodt, 1988). A and B are determined
by temperature (T in Celsius temperature scale) as shown in formula
(13) and (14) respectively, and I is the ionic strength described in
formula (15).

A ¼ 0:4883þ 8:074� 10−4T ð13Þ

B ¼ 0:3241þ 1:6� 10−4T ð14Þ

I ¼ 1
2

X
i

Zi
2Ci ð15Þ

where Ci is the ionic concentration (mol L−1). pCO2 is calculated from
Brook's formula (Brook et al., 1983) as follows.

log pCO2ð Þ ¼ −3:47þ 2:09� 1−e−0:00172E� � ð16Þ
Theoretically, the dissolution of each mole of CaCO3 consumes one
mole CO2. Thus, in carbonate rock outcrops, the CCSF can be calculated
by the following equation:

CCSF ¼ 106 P−Eð Þ HCO3
−½ �eq=2 ¼ 106 P−Eð Þ Ca2þ

h i
eq

¼ 106 P−Eð Þ KsK1K0=4K2γ Ca2þð Þ3
� �1=3

pCO2ð Þ1=3 ð17Þ

2.6. The uncertainty of the estimates

Many climatic, hydrological, meteorological and field monitoring
datasets were used in the study; hence, in order to improve the reliabil-
ity of the results asmuch as possible, we optimized both the selection of
the basic data and utilization of methods. For long-term field monitor-
ing data from January 1981 to December 2001, we first selected obser-
vation stations far away from human habitations and adopted a
sampling scheme that monitoring the Ca2+ concentration 3 to 4 times
per month. Then, we calculated the monthly average values of these
monitoring data. For the basic data, we chose the high spatiotemporal
daily total precipitation raster, the daily maximal and minimal temper-
ature raster (these three types of raster data are provided by the Global
Telecommunications System (GTS) from the long-termmonitoring data
gathered by N16,000 gauge stations (Chen et al., 2008) globally rather
than via satellite observation data with high uncertainties caused by
cloud and mist) and the terrestrial evapotranspiration calculated by
the improvement algorithm (Mu et al., 2011). Based on these basic
data, we present the global spatial maps of the monthly precipitation,
monthly average temperature and monthly evapotranspiration from
January 2000 to December 2014. In addition, the RF algorithm we
used for the global spatial maps of the ionic activity coefficient of Ca2+

is proven to be highly reliable and robust (Guo et al., 2004). According
to all these approaches, we used global high-spatial-resolution hydro-
logical and meteorological data (raster data, not point data) and long-
term field monitoring data based on a thermodynamic dissolution



Fig. 3. Annual average ionic activity coefficients of Ca2+ in aquifer of carbonate rock outcrops from 2000 to 2014.
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equilibrium model that fully considers the actual hydrological and
hydrochemical conditions of specific carbonate regions and separately
calculates the CCS of each pixel at a resolution of 0.05°. All of these
schemes can make our estimates have relatively high reliabilities.

Specifically, the uncertainties of our estimates include two parts
which are the uncertainties of the data and models. First, to resolve
the uncertainties of the data, three models were used to measure the
uncertainties of the global precipitation and surface temperature data
by Chen (Chen et al., 2008). The results show that all three objective
Fig. 4.Global annual fluxes of the global carbonate carbon sink (CCSF) and the distribution ofmu
spatial distribution of CCSF of each year. The high values of CCSF aremainly located in the equat
the process of dissolution. In contrast, the low values are mainly located in pleases where has p
Africa, cold zones in the Northern Hemisphere and so on. A) is the distribution map of themult
2014 at a spatial resolution of 0.05°, the scale is for A) only. B) are curve distributions of the annu
and 30°S have barely any carbonate zones; hence, at these latitude zones, there are no CCSF. The
equatorial regions and low latitudes of the Northern Hemisphere. (For interpretation of the r
article.)
techniques are capable of generating useful daily precipitation analyses
with biases that are generally b1% over most parts of the global land
areas. Hence, we defined the uncertainties of the precipitation and tem-
perature as 1%. For evapotranspiration, six new approaches were used
to improve the data, and the average of the two mean absolute biases
(MAE) of the improved algorithm is 24.35% (Mu et al., 2011). Therefore,
the uncertainty of the evapotranspiration is defined as 24.35%. We de-
fined the uncertainty of the monitoring Ca2+ concentration as 5% for
its confidence interval of 95%. Then, for the uncertainties of the models,
ltiannual average in global carbonate zones from2000 to 2014. The abovefigures show the
orial regions where the temperature and rainfall are relatively abundant that can promote
oor hydrological conditions such as plateau and desert zones in Central Asia and Northern
iannual average carbon sink fluxes produced by the dissolution mechanisms from 2000 to
al average CCSF in the latitudinal zones (80°N-30°S) of each year. The regions beyond80°N
regionsmarked in blue in B) (10°S-10°N, 15°N-35°N) are the two peaks of the CCSF in the
eferences to colour in this figure legend, the reader is referred to the web version of this
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the RF regression model based on the long-term monitoring Ca2+ con-
centration presents a percentage error of less than ±4% between the
fitting results and the monitoring data; hence, we defined the uncer-
tainty of the fitting concentration of Ca2+ as 4%. Based on the uncer-
tainty model (Landschutzer et al., 2014), we derived the final
uncertainty of our estimates to be 25.93%.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1σ2
i

q
ð18Þ

The uncertainty of data in this study is present in the form of y ± x.
Note that the uncertainty cannot completely reflect the accuracy of our
estimates as this uncertainty is the accumulation of the maximum un-
certainties of all the data and models, hence, represents the maximum
bias of our estimates. The specific bias or uncertainty of each pixel of
the estimated spatial maps is different and should be determined by
the actual hydrological, meteorological and field monitoring data in
that pixel.

3. Results

3.1. Ionic activity coefficients of Ca2+ in aquifer of carbonate rock outcrops

According to themeasured Ca2+ concentration in aquifer monitored
in karst observation station from January 1981 to December 2001, we
got the following concentration distributing phenomenon (Fig. 2). The
T and P share the synchronous variation trend, i.e., when T grows up,
P gets stronger almost at the same time, and when T cools down, P
Fig. 5. CCS of countries from 2000 to 2014 (all in 10−1 Pg C yr−1). The arcs in upper graph repres
country show the multiannual average CCS of this country. Each country has 15 histograms fro
year, expressing themagnitude with width. The bottom semicircle is divided into 15 bar charts
the sum of every countries' CCS in the corresponding year. The graph shows the distributions an
separated; thus, we calculated the sum CCS, which accounts for approximately 11.78% of the g
becomes negative. That's because T affects E, more water will gather
into the clouds due to the increases in E. Hence, more water in clouds,
more P will reach to the surface. In carbonate rock outcrops, a clear
dominance of the Ca2+ concentration is apparent for all cold periods
(around November to March), and in warm periods (around July), it
shows the opposite situation, i.e., the Ca2+ concentration is in the nega-
tive level among the periods. The Ca2+ concentration variations in the
long term shown above can be readily explained by the oscillation of
the T and P. Peaks in Ca2+ concentration around January result from
the decreases of T and P. The decreasing T makes the partial pressure
of CO2 in aquifer stronger than that in warm situation which promotes
the equilibrium reaction go to the positive process, at the same time, P
reaches to its perfect negative level which makes it hard to recharge
soil moisture and dilute the solution, hence, the Ca2+ concentration
reaches to the maximum in this period. Conversely, high T and P ac-
count for the minimum of Ca2+ concentration in the period.

We used MIC to quantify the correlation between Ca2+ concentra-
tion and P, T. The result shows that the correlation between Ca2+ con-
centration and P, T are 0.37 and 0.3 respectively, which means Ca2+

concentration can be fitted by P and T. To obtain more accurate Ca2+

concentration by P and T, based on the measured Ca2+ concentration
dataset and corresponding P, T in the same period, we established the
Random Forest model. Data from Jan 1981 to Dec 1999 were used to
build the fitting model, these data and the rest data (Jan 2000 to Dec
2001) were all utilized to test the model. After generating 500 regres-
sion trees, the model reached its steady state with mean of squared re-
siduals of 0.39 and percent variance explained of 99% which reflect the
high reliability and robustness of the model. The gray bars are training
ent the total CCS of each country in the 15 years from2000 to 2014. The values below each
m the upper semicircle to the bottom, and each histogram represents the total CCS of each
, which represent each year's total CCS within the global carbonate zones. Each bar chart is
d variations of the 26 countries' CCS. Other countries' CCS are too small to show if they are
lobal CCS.
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data from Jan 1981 to Dec 1999 that participated in the RFmodel estab-
lishing and the red bars are test data from Jan 2000 to Dec 2001. The
percentage errors of all data are in the range of ±4%.

According to our RF regression model and global monthly total pre-
cipitation and monthly average temperature data, we estimated the
global annual ionic activity coefficients of Ca2+ in aquifer of each
month from January 2000 to December 2014 and then we calculated
the average value of 12 months for each year, i.e. the annual ionic activ-
ity coefficients of Ca2+. The coefficients reflect the extent of the chemi-
cal reaction. Globally, the high coefficients are located in equatorial
regions and middle and low latitude regions in the Northern Hemi-
sphere (southwest of China, Alps in central and southern Europe, the
European Mediterranean areas, Ural Mountains and east-central
America). The coefficients are range from0.743 to 0.767 in the study pe-
riod in a steady state shown as Fig. 3.

3.2. Distribution and variation of the CCSF

The multiannual average CCSF in the global carbonate zones from
2000 to 2014 was estimated to be 0.87 tons of carbon per hectare per
year (tC km−2 yr−1). The spatial distribution characteristics are highly
dependent on the regional climatic and hydrological conditions (Bai
and Dent, 2009; Y. Li et al., 2016; Zeng et al., 2017). Hence, high values
of CCSF are mainly located in the equatorial regions where the temper-
atures and rainfalls are relatively abundant and can promote theprocess
of dissolution. In contrast, the low values are mainly located in those
zones with poor hydrological conditions, such as the plateau and desert
zones in Central Asia and Northern Africa and the cold zones in the
Northern Hemisphere. This phenomenon can be easily observed via
the global statistics of the different latitude zones concerning the CCSF
(Fig. 4 B). A clear dominance of the CCSF change signals (1.25–-
2.17 tC ha−1 yr−1) in the equatorial regions (10°S to 10°N) is apparent
Fig. 6. CCS distributions of other 116 countries or
for all years. There is another peak in the low latitudes (10°N to 35°N) of
the Northern Hemisphere, and the carbonate zones in southwestern
China are the main contributors to this pattern (Wang et al., 2004;
Tian et al., 2016). In the high-latitude regions of the Northern Hemi-
sphere, the CCSF show a decreasing trend with increasing latitude,
with slight fluctuations in some regions due to the uneven spatial distri-
butions of the CCSF. CCSF in the Southern Hemisphere are much lower
than those in the Northern Hemisphere at the same latitudes; more-
over, there are no peaks in the Southern Hemisphere between 10°S
and 30°S, as there are barely any carbonate zones in the high latitude re-
gions (beyond 30°S) of the Southern Hemisphere. Only the middle and
low latitude regions (0°S to 30°S) produce carbonate carbon sink. The
reasons for the different distributions of the CCSF at different latitude
zones lie in the climatic and hydrological conditions of the different
latitudes.

Global climate change is closely related to regional climate (B.G. Li
et al., 2016a). Hence, in order to explore the relationship between the
CCSF and the climate, we extend our analyses by calculating the average
CCSF values in each climate classification (Fig. 1) of the study period
(Table 3). The greatest average carbon sink flux, i.e., 2.11 tC ha−1 yr−1,
for 2000 to 2014 was contributed by the tropical rainforest climate
near the equator, and the smallest average CCSF values were present
in the tropical arid zones, showing a magnitude of 0.26 tC ha−1 yr−1.
In tropical climate regions, the CCSF of the tropical rain forest and trop-
ical monsoon climate zones showed an increasing and then decreasing
trend. In contrast, the CCSF in the tropical and subtropical humid cli-
mate zones presented a decreasing and then increasing trend. In addi-
tion, the tropical arid zones presented an intense fluctuation of the
CCSF. Notably, tropical savanna zones showed a continually decreasing
trend of CCSF during this period. In the temperate climate zones, the
CCSF of the temperate continental and monsoonal climate zones dem-
onstrated increasing and then decreasing trends. However, the
regions from 2000 to 2014 (Tg = 1012 g C).



Fig. 7. Spatial distributionmap of multiannual average carbon sinks produced by the dissolutionmechanisms from 2000 to 2014 of regions and the corresponding net forest carbon sinks.
The classification scheme is set according to Pan's research and is also the source of the net forest C sink data (see Pan et al. (2011) formore details). The coloured bars in the down-facing
direction represent the negative sinks or carbon emissions. The net forest sinks are missing in Central Asia, and the net forest sink of South America includes Mexico (Pan et al., 2011).
However, when we calculate the CCS, due to the large magnitude of the Mexico in CCS, we separated Mexico from South America. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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temperate maritime zones showed decreasing and then increasing
trends. In arid and cold climate zones, plateau climate zones showed rel-
atively stable variations of CCSF from 2000 to 2014 with an increase of
14.7%. In contrast, the CCSF in theMediterranean climate zones showed
intense fluctuations over the studyperiod, especially from2008 to 2014,
with increments of up to 74% (from0.50 ha−1 in 2013 to 0.87 tC ha−1 in
2014). Similarly, the subarctic continental, polar and tundra zones all
presented intense CCSF fluctuations; however, the CCSF in the semiarid
zones showed relatively stable characteristics.
Table 4
Annual total andmulti-annual average carbonate carbon sink (CCS) (Pg C yr−1) in continents a
outcrops area (C area) (×106 km2).

Regions C area (106 km2) Annual total CCS and multi-annual average CCS

2000 2001 2002 2003 2004 2005

Asia 5.738 0.400 0.377 0.347 0.392 0.326 0.382
Central Asia 2.448 0.094 0.104 0.087 0.127 0.095 0.100
Asian Russia 1.700 0.116 0.097 0.094 0.106 0.090 0.107
China 1.166 0.106 0.101 0.114 0.095 0.088 0.101
Southeast Asia 0.395 0.079 0.070 0.048 0.058 0.047 0.069
Japan & Korea 0.029 0.005 0.005 0.004 0.006 0.005 0.005

North America 2.418 0.205 0.173 0.169 0.187 0.193 0.194
Canada 1.555 0.116 0.103 0.088 0.096 0.095 0.128
USA 0.863 0.089 0.070 0.081 0.091 0.098 0.066

Europe 2.156 0.181 0.158 0.167 0.153 0.151 0.150
South Europe 1.343 0.110 0.094 0.110 0.085 0.091 0.102
European Russia 0.784 0.066 0.060 0.054 0.064 0.057 0.044
North Europe 0.029 0.005 0.004 0.003 0.004 0.003 0.004

Africa 1.279 0.104 0.071 0.079 0.070 0.070 0.059
America 0.616 0.064 0.055 0.061 0.055 0.057 0.065

South America 0.383 0.043 0.033 0.033 0.027 0.035 0.039
Mexico 0.233 0.021 0.022 0.028 0.028 0.022 0.026

Oceania 0.270 0.025 0.016 0.011 0.014 0.015 0.015
Global 12.476 0.979 0.849 0.833 0.872 0.813 0.866

The classification scheme is according to Pan's research (Pan et al., 2011). The basic data (P, T,
northern Africa and arctic regions of northern Canada, so, it's difficult to calculate the CSD in the
basic data with an area of 12.476 × 106 km2 (the global carbonate outcrops area is about 16.69
74.72%of the global carbonate zones.Whenwe calculate the CCS, due to the largemagnitudeofM
reference classification scheme (Pan et al., 2011). The data above should have followed by an u
3.3. Spatiotemporal characteristics and national measurement of the CCS

The CCS of the global carbonate zones was estimated to be 0.894 ±
0.232 Pg C yr−1 from 2000 to 2014. Different regions had special varia-
tion characteristics geographically (Table 4). Asia, owing to its huge car-
bonate rock distribution area of 5.738 × 106 km2, had theworld's largest
CCS, reaching 0.394±0.102 Pg C yr−1 in this period (44.07% of the global
CCS). North America contributed a CCS of 0.220±0.057 Pg C yr−1 (24.7%
of the global CCS) during the study period. Europe's CCS (0.160 ±
nd regions' carbonate rock outcrops from 2000 to 2014 and corresponding carbonate rock

(Pg C yr−1) in continents and regions' carbonate rock outcrops

2006 2007 2008 2009 2010 2011 2012 2013 2014 Mean

0.394 0.419 0.421 0.385 0.448 0.426 0.412 0.390 0.389 0.394
0.116 0.119 0.094 0.114 0.119 0.135 0.124 0.115 0.100 0.110
0.129 0.123 0.114 0.115 0.121 0.106 0.096 0.081 0.110 0.107
0.089 0.103 0.120 0.088 0.113 0.092 0.106 0.101 0.116 0.102
0.054 0.068 0.088 0.063 0.089 0.086 0.079 0.088 0.058 0.070
0.006 0.006 0.005 0.005 0.007 0.007 0.007 0.005 0.005 0.005
0.184 0.187 0.208 0.198 0.182 0.190 0.172 0.177 0.184 0.187
0.111 0.119 0.122 0.106 0.104 0.101 0.105 0.098 0.108 0.107
0.073 0.068 0.086 0.092 0.078 0.089 0.067 0.079 0.076 0.080
0.159 0.155 0.164 0.185 0.189 0.139 0.186 0.114 0.156 0.161
0.092 0.099 0.106 0.121 0.130 0.081 0.118 0.074 0.107 0.101
0.063 0.053 0.055 0.061 0.056 0.054 0.064 0.037 0.046 0.056
0.004 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.004
0.084 0.089 0.067 0.073 0.080 0.080 0.082 0.077 0.074 0.077
0.057 0.051 0.071 0.049 0.072 0.064 0.048 0.068 0.055 0.059
0.035 0.026 0.039 0.030 0.036 0.037 0.026 0.032 0.026 0.033
0.022 0.025 0.032 0.019 0.036 0.027 0.022 0.036 0.029 0.026
0.010 0.015 0.016 0.015 0.017 0.023 0.014 0.016 0.014 0.016
0.887 0.916 0.949 0.904 0.989 0.923 0.914 0.842 0.870 0.894

E) are missing in plateaus in Central Asia, some arid regions in the Middle East, deserts in
se regions. Hence, the carbonate outcrops in the above table are only those which include
8 × 106 km2). That means the carbonate zones participated in our calculation account for
exico inCCS,we separatedMexico fromSouthAmerica rather calculated together like our
ncertainty of 25.93%.
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0.041 Pg C yr−1) in its carbonate zones (2.156 × 106 km2) represented
18.0% of the global CCS from 2000 to 2014. The carbonate zones in
Africa (1.279 × 106 km2) contributed a CCS of 0.077 ± 0.020 Pg C yr−1,
which accounts for 8.7% of the global CCS during the study period.
South America (including Mexico) and Oceania represented the other
4.6% of the global CCS from 2000 to 2014, with CCS values of 0.025 ±
0.006 (2.8%) and 0.017 ± 0.004 (1.9%) Pg C yr−1 from 0.616 × 106 and
0.270 × 106 km2 carbonate areas, respectively.

Within Asia, central Asia had the largest multiannual average CCS
(0.110 ± 0.029 Pg C yr−1) and showed an upward tendency during
the study period. The Asian Russian CCS values first exhibited increasing
trends and then decreasing trends, with multiannual average CCS of
0.107 ± 0.028 Pg C yr−1. China had an average CCS of 0.102 ±
0.026 Pg C yr−1 with remarkable fluctuations in this period. The South-
east Asian CCS values (with an average of 0.070 ± 0.018 Pg C yr−1)
showed fluctuation tendencies that first decrease and then increase. In
contrast, Japan and Korea showed steady CCS during the study period,
with an average CCS of 0.005 ± 0.001 Pg C yr−1. For the two regions
of North America and Canada, the CCS values first showed increasing
trends and then decreasing trends, with a multiannual average CCS of
0.107 ± 0.028 Pg C yr−1. The CCS in the United States presented a de-
creasing trend, with an average of 0.080 ± 0.021 Pg C yr−1. In Europe,
the South European CCS showed a trend of first increasing and then de-
creased, with an average CCS of 0.101 ± 0.026 Pg C yr−1. The CCS of
European Russia presented a decreasing trend with an average value
of 0.056 ± 0.015 Pg C yr−1. Similarly, the North European CCS showed
the same tendency as those of European Russia, with an average CCS
of 0.005±0.001 Pg C yr−1. The African CCS exhibited a slight decreasing
trend during this period, with the biggest CCS occurring in 2000. The
South American CCS showed a decreasing trend, with an average CCS
of 0.033 ± 0.009 Pg C yr−1. Mexico, though it has a smaller carbonate
zone area (0.233 × 106 km2) than that of Oceania, showed a
multiannual average CCS of 0.026 ± 0.007 Pg C yr−1, which is 1.6
times that of Oceania.
Table 5
Global annual total and multi-annual average CCS (Pg C yr−1) of countries from 2000 to 2014.

Countries Annual total CCS and multi-annual average CCS (Pg C yr−1)

2000 2001 2002 2003 2004 2005 200

Russia 0.181 0.156 0.148 0.171 0.147 0.152 0.19
Canada 0.116 0.103 0.088 0.096 0.096 0.129 0.11
China 0.106 0.100 0.113 0.095 0.088 0.100 0.08
United States 0.089 0.070 0.081 0.091 0.098 0.066 0.07
Indonesia 0.037 0.031 0.018 0.027 0.022 0.032 0.02
India 0.022 0.029 0.022 0.036 0.025 0.035 0.03
Mexico 0.021 0.022 0.028 0.028 0.022 0.026 0.02
Kazakhstan 0.032 0.025 0.022 0.035 0.026 0.018 0.02
Brazil 0.028 0.021 0.019 0.015 0.023 0.023 0.02
Ukraine 0.016 0.017 0.014 0.013 0.016 0.015 0.01
Australia 0.024 0.015 0.010 0.013 0.013 0.014 0.00
Turkey 0.017 0.025 0.014 0.018 0.012 0.011 0.01
France 0.017 0.012 0.014 0.009 0.009 0.009 0.01
Nigeria 0.026 0.011 0.014 0.012 0.010 0.011 0.01
Papua New Guinea 0.011 0.008 0.010 0.011 0.010 0.013 0.00
Belarus 0.010 0.009 0.008 0.008 0.009 0.008 0.00
Philippines 0.010 0.008 0.006 0.007 0.006 0.008 0.00
Congo 0.010 0.005 0.011 0.011 0.006 0.004 0.00
South Africa 0.013 0.010 0.006 0.005 0.007 0.006 0.01
Iran 0.005 0.005 0.005 0.006 0.007 0.006 0.00
Gabon 0.006 0.006 0.005 0.004 0.005 0.004 0.00
United Kingdom 0.009 0.004 0.007 0.004 0.005 0.004 0.00
Italy 0.007 0.003 0.007 0.005 0.005 0.006 0.00
Spain 0.006 0.003 0.005 0.005 0.004 0.004 0.00
Ireland 0.006 0.003 0.005 0.003 0.003 0.003 0.00
Laos 0.007 0.008 0.003 0.002 0.001 0.004 0.00
Other countries or regions 0.148 0.136 0.150 0.143 0.137 0.153 0.15
Global 0.979 0.849 0.833 0.872 0.813 0.866 0.88

The above table only presents those countries with relatively significant CCS. Other countries re
uncertainty of 25.93%. Hence, theglobalmulti-annual average CCS is 0.894±0.232PgC yr−1. Th
Here, this study presented the national measurement of 142 coun-
tries or regions for CCS not only in magnitude but also in the spatial dis-
tribution of each nation (Figs. 5 and 6, Table 5). The estimates of the CCS
for the countries with carbonate rock outcrops showed that Russia had
the largest CCS in theworld, with a value of 0.163 Pg C yr−1, followed by
Canada, presenting a CCS of 0.107 Pg C yr−1. China ranked third, show-
ing a CCS of 0.102 Pg C yr−1, and the USA exhibited a CCS of
0.08 Pg C yr−1, making it the fourth largest. These four countries' total
CCS (0.452 Pg C yr−1) accounts for more than half (50.56%) of the
world's total CCS (0.894 Pg C yr−1).
4. Discussion

4.1. Comparisons with studies from the same field

The multiannual averages of our estimated CCS (0.894 ±
0.232 Pg C yr−1) are within the scope of the research results from this
(0.15 to 1.50 Pg C yr−1), showing similar results to several studies
(Table 6). Notably, although these studies havemade outstanding contri-
butions to the determination of CCS values, these studies generally used
limited point data from field stations, resulting in obviously different re-
sults (ranging from 0.15 to 1.50 Pg C yr−1) and high uncertainties. Fur-
thermore, these limited point data also lead to poor spatiotemporal
representativeness and expandability of the estimates. Therefore, com-
bining global long-termhigh-spatiotemporal-resolution ecological, mete-
orological and hydrological remote sensing data with long-term field
monitoring data based on a global thermodynamic dissolution model
that fully considers the actual hydrological, meteorological and geochem-
ical conditions of specific regions can effectivelymakeup for the lacking of
the previous estimates, which means that the new estimates of the CCS
andCCSFhavehigher spatiotemporal representativeness and expandabil-
ity because the results of each pixel are calculated separately based on the
actual hydrological and meteorological conditions of specific time series.
of countries from 2000 to 2014

6 2007 2008 2009 2010 2011 2012 2013 2014 Mean

2 0.176 0.170 0.175 0.176 0.160 0.160 0.118 0.157 0.163
1 0.120 0.122 0.106 0.105 0.101 0.105 0.098 0.108 0.107
8 0.102 0.119 0.087 0.113 0.092 0.105 0.101 0.115 0.102
3 0.068 0.086 0.092 0.078 0.089 0.067 0.079 0.076 0.080
5 0.036 0.047 0.030 0.049 0.040 0.040 0.045 0.026 0.034
2 0.035 0.032 0.026 0.038 0.039 0.036 0.046 0.032 0.032
2 0.025 0.032 0.019 0.036 0.027 0.022 0.036 0.029 0.026
8 0.025 0.022 0.027 0.023 0.030 0.025 0.023 0.015 0.025
5 0.015 0.020 0.021 0.019 0.020 0.012 0.017 0.012 0.019
5 0.015 0.017 0.018 0.022 0.010 0.017 0.010 0.014 0.015
9 0.013 0.015 0.014 0.016 0.022 0.012 0.015 0.014 0.015
3 0.013 0.008 0.018 0.014 0.013 0.017 0.007 0.015 0.014
4 0.013 0.015 0.013 0.015 0.013 0.019 0.013 0.014 0.013
5 0.019 0.008 0.008 0.011 0.008 0.010 0.007 0.004 0.012
9 0.010 0.009 0.008 0.009 0.009 0.009 0.010 0.007 0.010
8 0.008 0.007 0.014 0.011 0.006 0.010 0.006 0.006 0.009
6 0.007 0.012 0.010 0.007 0.013 0.009 0.009 0.007 0.008
5 0.009 0.008 0.009 0.005 0.010 0.009 0.007 0.006 0.008
0 0.008 0.007 0.006 0.006 0.007 0.008 0.007 0.006 0.007
7 0.009 0.004 0.009 0.005 0.009 0.009 0.006 0.007 0.007
5 0.009 0.001 0.006 0.011 0.007 0.010 0.007 0.011 0.007
6 0.005 0.007 0.007 0.005 0.006 0.010 0.004 0.005 0.006
3 0.004 0.007 0.006 0.008 0.004 0.007 0.005 0.008 0.006
4 0.004 0.007 0.005 0.006 0.003 0.005 0.004 0.003 0.004
5 0.004 0.005 0.006 0.004 0.005 0.005 0.002 0.004 0.004
2 0.002 0.002 0.002 0.003 0.005 0.003 0.004 0.003 0.003
5 0.163 0.160 0.163 0.193 0.173 0.170 0.157 0.163 0.158
7 0.916 0.949 0.904 0.989 0.923 0.914 0.842 0.870 0.894

present a set of those countries with small CCS. All CCS above should have followed by an
eCCSdistributionsof other 116 countries or regions from2000 to 2014 are showed in Fig. 6.



Table 6
Estimates of global CCS from different studies.

Sources Date Estimate method Details Magnitude

Yuan (1997) 1997 Estimate from the concentration of bicarbonate in
the world's typical watershed drainage.

Based on case studies of 13 monitoring sites in China and then
extrapolated from similar global data set.

0.61

Gaillardet et al. (1999) 1999 Compiled data from the world's 60 largest
watersheds.

Calculated CCS of the world's 60 largest watersheds. In addition,
carbon sinks of silicate weathering are also calculated.

0.15

Liu and Zhao (2000) 2000 Estimate using the concentrations of bicarbonate in
watershed drainage.

A variety of methods are used to calculate the CCS of China based on
an area ratio and the extrapolated estimated dissolution rates of the
global carbonate zones.

0.42

Carbonate rock table corrosion model. 0.41
Diffusion boundary layer model. 1.50

Gombert (2002) 2002 Thermodynamic equilibrium estimates based on
meteorological station data.

Used multiple meteorological stations data and a model that fully
considers the actual hydrological and hydrochemical conditions of
specific carbonate regions.

0.3

Liu et al. (2010) 2010 Estimate using the concentration of bicarbonate in
the world's typical watershed drainage.

Sixteen meteorological stations datasets were used to estimate the
global sinks from the dissolution mechanism.

0.82

Martin (2017) 2016 Coupled global mapping of lithology with the
GEM-CO2 model as well as watershed composition.

Using global mapping of lithology (Suchet et al., 2003), not only of
the estimated the CCS of carbonate zones but also of the shale.

0.80

This paper Thermodynamic equilibrium estimates based on
global high spatial resolution hydrological,
meteorological and geochemical data, coupled with
a machine learning algorithm.

Used global high spatial resolution hydrological and meteorological
data (raster data, not point data) and long-term field monitoring
data based on a model that fully considers the actual hydrological
and hydrochemical conditions of specific carbonate regions.
Separately calculated CCS of each pixel with a resolution of 0.05°.

0.89
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4.2. Comparison with the net forest sink

Our estimated CCS amounts to 74.50% of the global net forest sink
(NFS) (1.20 ± 0.85 Pg C yr−1), clearly demonstrating that the used to
be ignored carbonate carbon sink has huge contribution to the global
carbon budget and the CCS cannot be removed from the global carbon
cycle system due to its significantmagnitude. Notably, there are consid-
erable differences in the magnitudes of the NFSs and the corresponding
area's CCS in the different regions of the world (Fig. 7, Table 7). For ex-
ample, the Canadian CCS is much greater than its NFS because the bio-
mass C sink of the managed forests of Canada was reduced due to the
biomass loss from intensified wildfires and insect outbreaks (Kurz
et al., 2008). As a result of the negative NFSs in South Asia and South
America (including Mexico), the CCS in these regions are greater than
the corresponding NFSs. Notably, the Central Asian carbonate zones
are larger than those involved in the calculation due to a lack of basic
data in some regions; however, the data-lacking regions are mostly
Table 7
Regional and global annual average CCS (2000–2014) in the world's carbonate zones and
corresponding net forest sinks (2000–2007) (Pg C yr−1) in forests.

Regions Annual average
CCS from 2000
to 2014

Annual average
net forest sinks
(Pan et al., 2011)
from 2000 to 2007

Percentages of
annual average
CCS to net forest
sinks

Asian Russia 0.107 ± 0.028 0.26 41.15%
European Russia 0.056 ± 0.015 0.20 28.00%
Central Asia 0.110 ± 0.029 No data /
Canada 0.107 ± 0.028 0.01 N100%
China 0.102 ± 0.026 0.18 56.67%
South Europe 0.101 ± 0.026 0.24 42.08%
United States 0.080 ± 0.021 0.24 33.33%
Africa 0.077 ± 0.020 0.16 48.13%
Southeast Asia 0.070 ± 0.018 −0.14 N100%
South America 0.033 ± 0.009 −0.09 N100%
Mexico 0.026 ± 0.007
Oceania 0.016 ± 0.004 0.06 26.67%
Japan & Korea 0.005 ± 0.001 0.06 8.33%
North Europe 0.004 ± 0.001 0.03 13.33%
Global 0.894 ± 0.232 1.20 ± 0.85 74.50%

Here, the percentages of regional and global CCS amounted to corresponding net forest
sink are also presented in the table. The classification scheme is according to Pan's research
and it's also the source of net forest C sink data (Pan et al., 2011). The net forest sinks are
missing inCentral Asia and thenet forest sinkof SouthAmerica includesMexico (Pan et al.,
2011), however, whenwe calculate the CCS, due to the large magnitude of Mexico in CCS,
we separated Mexico from South America.
plateaus and deserts with poor climatic and hydrological environments
(Mu et al., 2011), leading to lowCCS values. For this reason,we hold that
the estimated Central Asian CCS can basically represent the actual CCS
values in this region. Similarly, although the NFS of Central Asia is un-
known (Pan et al., 2011), the extreme climate characteristics and low
vegetation and forest coverage (Hansen et al., 2013; Jia et al., 2015) in
most of this region can only bring about disadvantageous NFS values,
which makes us consider that the CCS in this region may be larger
than its corresponding NFS. In contrast, the CCS in other regions are
less than their corresponding NFSs. The Russian CCS amounts to
70.73% of its NFS because of the region's extremely large magnitude of
carbonate zones (2.484 × 106 km2), which is the greatest area globally.
Chinahas carbonate zones spanning1.166× 106 km2,which amounts to
only 46.94% that of Russia; however, the CCS of China amounts to
62.58% that of Russia because the carbonate zones in China are more
concentrated in Southwest China, which enjoys plentiful rainfall and
steady warm temperatures, which are conducive to the long-term sus-
tainability of the dissolution process. For this reason, China shows a rel-
atively large CCS, which amounts to 56.72% of its NFS. The regions of the
United States and South Europe within the same latitude zones share
similar CCS and NFSs due to the similar climate conditions over their
carbonate zones. TheAfrican carbonate zones involved in the estimation
(eliminating the deserts in northern Africa) have an area of 1.279
× 106 km2, which accounts for 10.25% of global carbonate zones area,
and its CCS amounts to 48.13% of its corresponding NFS. The rest of
the regions, such as Oceania, North Europe, Japan and Korea, have rela-
tively small CCS; the percentages to their NFSs are all N5% (amounting to
26.67%, 13.33%, and 8.33% of their corresponding NFSs). The above dis-
cussions show that the global CCS values, whether from the global scale
or a regional perspective, have magnitudes that cannot be ignored and
are an important component of the global terrestrial carbon sink
system.

4.3. Contribution to the global carbon budget

It is remarkable that according to our estimates, the global CCS ac-
counts for 46.81%of themissing carbon sink (Table 8),which further ex-
plains the importance of the CCS. In addition, our research not only
confirms an important source of the terrestrial carbon sink and missing
sink but also details the magnitudes, locations and variations of the
global and regional CCS. Specifically, based on the global carbon budget
model (Melnikov and O'Neill, 2006), the terrestrial carbon sink is equal
to the carbon emissions (fossil fuel emissions and emissions from
changes in land use) minus the non-terrestrial carbon sinks (oceanic



Table 8
Global carbon budget for the study period (Pg C yr−1).

Sources and sinks Magnitudes Periods

Sources (C emissions)
Fossil fuel emissionsa 7.60 ± 0.40 2000–2006
Land use emissionsb 1.14 ± 0.18 1990–2009
Total sources 8.74 ± 0.43

Sinks (C uptake)
Atmospheric increasec 4.13 ± 0.17 1998–2011
Ocean net uptakec 1.50 ± 0.50 1998–2011
Forest net uptaked 1.20 ± 0.85 2000–2007
CCSe 0.89 ± 0.23 2000–2014
Total sinks 7.72 ± 1.03
Global residual 1.02 ± 1.12

All the magnitudes in the above table are the mean values of their study periods, which
make their comparisons and calculations reasonable. The total sinks are the sum of fossil
fuel emissions and land use emissions. The terrestrial sink equals the carbon emissions
(sources) minus the non-terrestrial carbon sinks, which is equivalent to the magnitude
of 3.11 ± 0.68 Pg C yr−1. The missing sink is equal to the terrestrial sinks minus the net
forest uptake, which is 1.91 ± 1.09 Pg C yr−1. The global residual represents the rest of
the unknown sinks or the still uncertain missing sink.

a For fossil fuel emissions, please see Canadell's study (Canadell et al., 2007).
b For the mean global emissions from land use and land-cover change (LULCC), please

see Houghton's research (Hartemink et al., 2008; Houghton et al., 2012).
c For the carbon sinks that correspond to atmospheric increases and net ocean uptake,

please see Landschützer's study (Landschutzer et al., 2014).
d For the net forest uptake, please see Pan's study (Pan et al., 2011).
e The CCS is calculated for the global carbonate zones.
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uptake and atmospheric concentration increases). Hence, the terrestrial
carbon sink estimated here is 3.11 ± 0.68 Pg C yr−1, which is in the
range (1.9–4.8 Pg C yr−1) of those values given in earlier studies
(Watson et al., 2000; House et al., 2003; Melnikov and O'Neill, 2006;
Landschutzer et al., 2014; Poulter et al., 2014). Our estimated CCS ac-
counts for 28.75% of the terrestrial carbon sink. After subtracting the
NFS from the terrestrial sink, the global carbon budget still remains un-
balanced, with a sink of approximately 1.91± 1.09 Pg C yr−1 needing to
be explain, which describes the missing sink (Schindler, 1999; Nilsson
et al., 2003). Our estimated CCS accounts for 46.81% of this missing
sink, and thus, the global CCS is an important source of the missing
sink that cannot be ignored. Based on this calculation, nearly half of
the missing sink and its global distribution have been identified.

5. Conclusions

In this study, our estimates suggest that the global CCS accounts for
more than one-quarter of the terrestrial sink or nearly half of the global
missing sink, or amounts to 74.50% of the global net forest sink which
clearly demonstrate that the used to be ignored carbonate carbon sink
has huge contribution to the global carbon budget. Our global high res-
olution distributionmaps of the CCSF have solved the problem of spatial
distributions of the global and national CCSF and CCS which have
plagued researchers for many years. Our national measurement of 142
countries or regions showed that every nation, regardless the size, rich
and poor, the strong or weak, all have carbon emission rights as well
as carbon sequestration obligations, and we should incorporate CCS
into the category of national carbon measurement and global carbon
trading just like forest carbon sequestration due to the huge magnitude
of CCS. Also, each individual, regardless poverty and wealth, has carbon
emission rights as well as carbon sequestration obligations, so the CCS
should be considered in the global carbon markets. Of course, it is pos-
sible to measure the spatiotemporal magnitude of rock weathered car-
bon sequestration according to per capita.

Our research estimated the magnitudes, spatial distributions, varia-
tions and contributions to the global carbon budget of the CCS in a
higher spatiotemporal representativeness and expandability way,
which, viamultiplemechanisms, introduce an important sink in the ter-
restrial carbon sink systemand the globalmissing sink and that can help
us further reveal and support our understanding of global rock
weathering carbon sequestration, terrestrial carbon sink system and
global carbon cycle dynamics which make our understanding of global
change more comprehensive. According to our national measurement
of CCS, CCS of 142 countries across six continents were identified and
that can be a significant support for the carbon emission trading in the
global carbon markets which can make the global or national carbon
markets and emission trading system more complete, fairer and more
legitimate.

Of cause, our research also has some limitations. For data, the long-
term monitoring dataset can well exhibit the real geochemical condi-
tions of the carbonate regions which are less affected by human activi-
ties, however, there is no denying that its expansion to the global
scale still has some bias in some regions strongly affected by the
human activities. Therefore, in future works, wewill adoptmore appro-
priate data andmethods to solve this problem. In addition, althoughwe
have done a lot of efforts to reduce the uncertainty of the estimated re-
sults such as the data selection, processing and model building, we still
have some shortcomings in the determination of the uncertainty in
pixel level. In the future, wewill find the rightway for the spatial uncer-
tainty distribution of each pixel.
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