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Abstract

Obtaining accurate soil depth information is critical to improving how we

assess the health and manage of soil resources that contribute to sustainable

management of agricultural lands. While there are many techniques to assess

soil characteristics, using ground penetrating radar (GPR) to determine soil

depth has received little attention. This study aimed to determine the suitability

of GPR for obtaining accurate soil depth information over a 10 km intervals

grid system in a generally flat grasslands ecosystem in the Sichuan Province of

China. Geographic information system (GIS) and geostatistical techniques were

used to map the spatial distribution of soil depth across the field site. Images

created from GPR were filtered using DC removal and automatic gain control,

and log-transformation was used to transform the raw data in order to con-

form a normal distribution. The soil depth data were spatially interpolated

across the field site using the geostatistical techniques of (semi-) variogram and

ordinary kriging (OK), then ground-truthed and validated via comparison with

traditional methods and previously collected data. A total of 39 random data

points (ruler-measured and GPR data) were selected to evaluate the accuracy

of the GPR, and results showed that the difference were within 3 cm of the

actual soil depth in 93% of all samples, and within 5 cm in all samples

(R2 = 0.914). Results confirmed that this GPR reflection technique has the

potential to precisely and quickly measure soil depth over large areas and

under variable topography, contributing to the body of technical information

that can help inform soil management policy for sustainable agriculture. The

spatial distribution map of soil depth produced with the aid of OK demon-

strated the accuracy and non-destructive features of GPR, which is able to pro-

vide a more detailed map of soil depth than methods used in previous

grassland soil depth studies.

Introduction

Soil depth, also called “regolith depth” (Craig 1978; Cerd�a

and Garc�ıa-Fayos 1997) or “soil thickness” (Kuriakose

et al. 2009), refers to the vertical depth of soil from the

surface to the consolidated material where plant roots are

distributed (Kuriakose et al. 2009). This is a primary

indicator of soil quality, and exerts significant influence

© 2018 Japanese Society of Grassland Science, Grassland Science 1

Japanese Society of Grassland Science ISSN1744-6961

Japanese Society of Grassland Science

http://orcid.org/0000-0003-2068-3737
http://orcid.org/0000-0003-2068-3737
http://orcid.org/0000-0003-2068-3737


on vegetation yield (Fuhlendorf and Smeins 1998; Meyer

et al. 2007). A decrease in soil depth may result in

reduced vegetative productivity (Rhoton and Lindbo

1997), landslides and soil erosion (Bathurst et al. 2007),

and water loss (Wang et al. 2006). To better understand

and more sustainably manage soil resources, detailed soil

depth information is critical.

Direct measurements of soil depth can be difficult to

obtain over large areas with diverse topography, and are

influenced by local micro-topography, parent material

and hydrogeological conditions (Moore et al. 1993; Diet-

rich et al. 1995; Johnson et al. 2005). Adding to the com-

plexity of obtaining accurate measurements, these

variables can be mutually interactive. Soil depth varies

according to local topography (Lee et al. 1988; Gessler

et al. 2000; Pachepsky et al. 2001), water retention (Whe-

lan et al. 2005), vegetative cover (Meyer et al. 2007), and

geological features (Minasny and McBratney 1999). Con-

ventional soil depth measurement techniques include

invasive methods such as coring and test pit excavations

(Phillips 2010), which are often time consuming, expen-

sive, damage the soil, and only provide point-specific

information. Previous studies have attempted to deter-

mine soil depth by using electrical resistive imaging com-

bined with conventional invasive methods, and have

failed to clearly identify how the sub-surface properties

are spatially distributed (Yamakawa et al. 2012). Other

studies have predicted soil depth by building models

based on discrete element methods using measured vari-

ables such as slope, curvature and profile curvature, wet-

ness index, land use, distance from streams and platform

curvature (Cundall and Strack 1979; Pennock and De

Jong 1987; Lin and Ng 1997; Chareyre and Villard 2005;

G€uneralp and Rhoads 2009). Although less time consum-

ing, these models involve dividing each soil site into a

number of interconnected discrete elements and are lim-

ited by the complexity of the topography of the study

area. Model accuracy is also affected by the presence of

gentle convex undulations and undifferentiated surfaces

in the topography, which cannot be unequivocally dis-

criminated from each other in a digital elevation model

(DEM) (Chartin et al. 2011).

More recently, ground penetrating radar (GPR) has

been successfully used to quantify spatial distribution soil

water and moisture content (Chanzy et al. 1996; Hubbard

et al. 2002; Schmalz and Lennartz 2002; Grote et al. 2003;

Huisman et al. 2003; Galagedara et al. 2005; Minet et al.

2010; Sucre et al. 2011), soil roughness (Lambot et al.

2006), snowpack thickness (Previati et al. 2011), and

organic matter thickness (Shih and Doolittle 1984). How-

ever, GPR has not yet been used to investigate and deter-

mine soil depth in grassland ecosystems. The applications

of GPR across soil and environmental science have shown

that this technology is significantly less time consuming,

and can provide a continuous characterization of the soil

structure compared with conventional coring and test pit

excavation methods (Davis and Annan 1989; Gerber et al.

2010). In this study, GPR was used to determine soil

depth in a grassland ecosystem of the Qinghai Tibet

Plateau.

The primary industry in this region is livestock hus-

bandry, and the lack of suitable forage causes a substan-

tial loss of livestock on an annual basis. According to

previous studies, from the 1950s to 2000s, total biomass

in the grassland decreased approximately 50% (Kreutz-

mann 2012). To promote the sustainable development

and management of grassland ecosystems, pasture devel-

opment (Prior 1994) and rangeland management pro-

gram was initiated in the 1990s (Sandford 1983; Moris

1988) that concentrated on both reducing overgrazing

and simultaneously aiding socio-economic development

in the agricultural sector. These policies were aimed at

developing appropriate pastures on flat, accessible areas

with deep soils rich in organic matter. To help create

these management policies, a National Grassland Survey

carried out in during the 1980s at a topographic maps-

scale of 1: 200 000 with one sample taken per 10000 ha

(Qin et al. 1984) collected data in this area measuring soil

nutritional elements, soil organic matter, vegetation cover,

and biomass. In the same study, the soil depth at 164

sites was measured using coring and test pit excavation

methods (Qin et al. 1984). However, the spatial distribu-

tion of soils has seldom been a factor considered in poli-

cies that attempted to help establish sustainable pastures

and grasslands.

This study investigated the suitability of GPR for mea-

suring accurate soil depth in a grassland ecosystem in a

northwest Sichuan Province in the Qinghai Tibet Plateau,

China. Additional GIS and geostatistical techniques were

added to continuously interpolate and map the spatial

distribution of soil depth across the field site to assist in

the development of sustainable pastures and healthy

grassland ecosystems at a fine scale. To test the accuracy

of the method, the ruler-measurement data were com-

pared and the past data in the 1980s (Qin et al. 1984)

were used to verify the distribution map.

Materials and methods

Study area and soil investigations

With a total area of approximately 8400 km2, the grass-

land under study is in Hongyuan County (Sichuan Pro-

vince), in the southeast Qinghai Tibet Plateau

(Himalayan Plateau) approximately 3500 m above sea-

level [NW (33°050N, 103°210E), NE (33°180N, 102°470E),
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SW (31°510N, 102°390E), and SE (32°170N, 101°030E)].
The climate is influenced by the summer monsoon from

the Indian Ocean (Yamamoto et al. 2010), and receives

approximately 750 mm of average annual precipitation

(Hong et al. 2003). Sampling locations (n = 121) were

determined based on a grid system of 10 km intervals

and were generally flat (slope angle < 12°), which allowed

easier access (Figure 1). The ruler-measurements were

simultaneously carried out at random in 39 places and

used to test the accuracy of GPR. Field sampling was

conducted between July and October 2012 on dry days

(defined as at least 2 days after any rainfall event).

Ground penetrating radar measurements

The GPR system (MALA ProEx, 500 MHz, MAL�A Geo-

sciences, Sweden) consisted of a pulse transmitter

antenna, a receiver antenna, and a control unit, which

provided high-resolution images of subsurface features

in the form of a profile view (Figure 2). The pulses of

electromagnetic energy emitted through the soil have

distinct characteristics, which can contact a boundary

layer or an abnormality (i.e., soil, parent material). The

image is the electromagnetic equivalent of a single-trace

acoustic profiling system, which is essentially an image

of the variation in ground permittivity (Lowe 1985;

Daniels 2004). Using the equation below to calculate the

velocity of pulse propagation (Daniels 2004)

V ¼ 2D=T;

which describes the relationship between the propagation

velocity (V), depth (D), and two-way pulse travel time

(T). Before the GPR was used, a metal calibration plate

was buried at a known depth (50 cm in the study) to

estimate the velocity of propagation (0.1 m ns�1) and

determine the depth of soil. In the study, travel time of

the two-way radar pulse and the propagation velocity

were compared to show the situation of subsurface inter-

faces and calculate the soil depth.

Data analyses

GPR signal processing and analysis

To facilitate the extraction of soil depth information from

the raw GPR signal, standard signal processing techniques

were used. Using data acquisition software (Ground

Vision v.2.1, MALA Geosciences, Skolgatan, Sweden),

images were filtered by zero drift removal (DC removal),

amplification of deep signals (automatic gain control),

dislodging of direct wave and other horizontal and inher-

ent signals (subtract mean trace), and removal of unnec-

essary low-frequency and high-frequency ingredients

(band pass) (detailed process described in Neal (2004)).

Figure 1 Map showing soil sampling locations in Hongyuan, Sichuan, China (shadowed areas with slope 12°).
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Through these signal processing techniques, the flooding

waves were removed while the signal intensity of useful

waves was retained, which facilitates the extraction of soil

depth information from the signal with the aid of the

equation.

Probability distribution

Before the production of the spatial distribution map of

soil depth, the data were tested to establish whether they

conformed to a normal distribution. Any violation of nor-

mality, such as high skewness or outliers, can impair the

variogram structure and kriging results (Helsel 1987;

McGrath and Zhang 2003). Soil depth data were trans-

formed and normalized using a log-transform, a com-

monly used transformation method in soil science (Beaver

et al. 1985) and was used to normalize the data set in this

study (with a Kolmogorov–Smirnovtest P-value of 0.093).

Spatial structure

To create a spatial distribution map of soil depth, ordinary

kriging (OK) was used to interpolate available and col-

lected data across the field site. Spatial variability was

modeled using a (semi-) variogram, and appropriate input

parameters were identified for the spatial interpolation

(McBratney and Webster 1986; Oliver and Webster 1986)

using Variowin 2.2 software (Weijun et al. 2010). A series

model’s parameters (Range, Sill, Partial Sill and Nugget)

were calculated to select the appropriate (semi-) variogram

models, the minimal measuring error (Nugget) model was

selected as the optimal model used in the study.

Results

GPR Performance

Several nature profiles were chosen to evaluate the accu-

racy of GPR, 39 sites were chosen randomly by ruler-

measurements and GPR simultaneously. A scatter plot

(Figure 3) shows the comparison of the ruler-measured

versus GPR data, which showed that most data were

located closely along a diagonal line, indicating that GPR

is reliable when measuring soil depth in this area. How-

ever, a few observed outliers that require further investi-

gation may be attributed to sampling errors,

measurement errors, or the process of extracting readings

from the GPR images. The difference between ruler-mea-

sured data and GPR-detected data were within 3 cm for

93% of samples, and within 5 cm in all samples. Other

studies have also found GPR to have a reliable perfor-

mance when measuring soil depth. For example, in the

Florida Everglades’ Agricultural Area, GPR was used to

determine the thickness of the organic soil layer, and

showed a similarly relatively high correlation coefficient

of 0.84 between the ruler-measured depth and the GPR-

detected depth (Shih and Doolittle 1984).

Basic statistics

Across the 121 GPR-created images and sampling sites

soil depth data, basic statistics including the minimum,

25th percentile, median, 75th percentile, 95th percentile,

maximum, mean, skewness, kurtosis and standard devia-

tion were calculated (Table 1). Approximately 75% of the

Figure 2 Ground penetrating radar (GPR) reflection record in sampling site 1 soil depth value was calculated per meter (showing soil depth and

parent material within 38 m).
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sampling values were less than 57 cm. The large differ-

ences between the minimum and maximum value and

high standard deviation revealed the heterogeneous nature

of soil depth in the study area. Meanwhile, the high skew-

ness and kurtosis values indicated the raw data set was

not normally distributed, which necessitated the log-

transformation detailed above.

Spatial structure of soil depth

Before selecting the appropriate semi-variogram models

for the kriging interpolation process, the directional fea-

tures of the spatial correlation should be examined. Vari-

ogram surface images were produced to examine the

directional features, and an isotropic feature was found.

The variogram model’s parameters (nugget, sill and

range) were determined for this model, as presented in

Figure 4. Soil depth data were found to fit well with the

spherical model, producing a well-structured semi-vario-

gram with small nugget effects (Nugget = 0.28). The Nug-

get/Sill ratio for the model was a relatively low 2.19%,

indicating that the model was less influenced by random

factors (Matheron 1963; Webster and Oliver 1992) and

had a strong spatial dependency in these samples. The

semi-variogram range was 3.3 km, which showed that

within 3.3 km, sampling sites were well autocorrelated.

The semi-variogram range was short relatively in such a

large grassland ecosystem, where the spatial heterogeneity

is stronger than in locations with frequent human activ-

ity, such as urban parks and recreational areas, where

heterogeneous soil attributes had a relatively short range

of 83–133 m (Dao et al. 2012). In the study, the relatively

short ranges in the semi-variogram compared with the

size of the study area showed that the sampling density

was not adequate to reveal the soil spatial structures, and

denser sampling needs to be carried out in the further

investigation.

Cross-validation

Cross-validation can be used to evaluate the effectiveness

of the geostatistical model with measurements from the

field site. However, these tests cannot detect bias in sam-

pling or analysis. In this study, a good linear relationship

between the actual and estimated data sets was obtained.

Cross-validation showed a root mean square standardized

error of the estimated response variable is 0.93 (the vari-

ogram model is optimal when it closed to 1 (Garrigues

et al. 2006) and a mean standardized error of 0.01 (opti-

mal when close to 0).

Discussion

Spatial distribution of soil depth

A spatial distribution map of soil depth in the grassland

was produced using OK (Figure 5). The fitted parameters

for the spherical variogram model were used in the inter-

polation process to quantitatively reveal spatial variability

(Webster and Oliver 1992; Burgos et al. 2006).

In the spatial distribution map of soil depth, approxi-

mately 1% of the area displayed relatively low values of

soil depth (15–20 cm), 15% of the area had a range of

20–35 cm, 43% of the area had a range of 35–50 cm,

34% of the area displayed relatively high values (50–
65 cm), and 4% of the area had the soil with a range of

65–80 cm, only 3% of the highest value. From these

observations, it was clear that the soil depth in the study

area ranged predominately from 35–65 cm (approxi-

mately 77% of the total area). The relatively deep soils

indicate these areas are potentially suitable for the estab-

lishment of pastures. However, it is worth noting that

Figure 3 A comparisons between soil depth values (per point) mea-

sured by ground penetrating radar (GPR) and ruler (n = 39,

R2 = 0.914).

Table 1 Summary statistics for soil depth extracted from ground penetrating radar (GPR) data (n = 121, unit in cm)

Min. 25% Median Mean 75% 95% Max. Skewness Kurtosis SD.

15 30 43 48 57 100 147 1.63 3.31 25.15
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most of the sampling sites were located in flat areas with

a slope less than 12°, which could retain more water and

nutrients and may have contributed to the higher values

observed for soil depth in this area.

Data from previous investigations conducted in the

1980s, measured by profile and location recorded, were

used for comparative purposes (Table 2), revealing simi-

lar results to the data derived from the spatial distribu-

tion map in the current study. However, the ranges of

soil depth reported in the present study were lower than

the 1980s observations, especially at two locations (Waqie

and Sedi village) at which the maximum values exceeded

100 cm in 1980s and have since showed a sharp decrease.

Through interviewing experts and working in the field, it

emerged that almost all the 1980s sampling sites in the

Waqie and Sedi villages were located in the centers of

wetlands. Over the years, it is possible that soil was

deposited and accumulated in these lower areas, account-

ing for the greater soil depth values. In contrast, the sam-

pling sites in the current project were predominately

located towards the edge of the wetland. Furthermore, the

sampling sites in the 1980s study did not use GPS but

instead used an old geographic name for identification,

making precise spatial comparisons difficult. The average

soil depth of the current study was lower than that in the

1980s, which may be the result of drought and geological

changes that have occurred over the past 30 years.

The spatial distribution map combined with data from

the 1980s survey demonstrated distinct regimes of soil

depth, from south to north. The landscape in Hongyuan

County has geographical features that range from moun-

tain plateau to hummocky plateau, formed by the uplifting

of the Tibetan Plateau and attributable to the activities of

glaciers, rivers, and vegetation over time. Due to these

diverse geological histories, the spatial distribution of soil

depth exhibits an irregular pattern across the study region.

According to previous field investigations, the diversity of

local micro-topography (Dietrich et al. 1995) and hydroge-

ology (Moore et al. 1993) exert significant influences on

the spatial variability of soil depth in the study area.Micro-

Figure 4 Spherical variogram model of soil depth (Nugget = 0.28, Sill =

12.739, Range = 3.3).

Figure 5 Spatial distribution of soil depth values in Hongyuan,

Sichuan, China.

Table 2 Comparison between soil depth (cm) for the special distribution map in current study and the 1980s investigation

Village

The 1980s investigation (recorded point)

The special distribution map in current study (same

point in special distribution map)

Minimum Maximum Average Minimum Maximum Average

Anqu 16 82 51 32 52 41

Longri 30 88 62 16 74 36

Sedi 43 133 88 40 55 50

Shuajinsi 33 89 60 40 44 43

Waqie 24 100 64 15 78 36
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topography in the region was mainly affected by soil pro-

duction from the underlying bedrock and the divergence

of diffusive soil transport. Regional hydrogeology affected

the spatial variability of soil depth through activity from

the river system. In this study, the relatively thick soils were

mainly distributed over colluviums and flood plains. The

spatial variability of soil depth and humus content were

also affected by the underlying regional geology (parent

rock, texture and geomorphology), climate, vegetation and

other biotic factors such as anthropogenic and biodynamic

impacts (Riha et al.1986; Bernier et al. 1993; Bernier and

Ponge 1994; Ponge 2003; Johnson et al. 2005; Aubert et al.

2006; Ponge et al. 2011; Crouvi et al. 2013).

The spatial distribution map clearly illustrated patterns

in soil depth, with relatively deep soil in the north, north-

east, southwest and relatively shallow soil in the south

and northeast of the study area. The greater soil depth

values in the north, northeast and southwest correlated to

the diversity of local hydrogeology and micro-topography

in that region, as well as the distribution of river systems,

which caused a thicker soil layer. In the southern study

area, the thick soils are most likely a result of large areas

of forest and bush laying fallow. This difference in depths

confirmed that the distribution of river systems and

degree of vegetation cover had a positive influence on soil

depth (and vice versa) (Delgado et al. 2000; Tanaka et al.

2009). In the northeastern study area, there is a lower

water table, and the subsequent reduced vegetation cover

and additional intense farming could have contributed to

the shallower soils. Finally, our analysis showed that a

large area of swamp and wetland in the north and a

region with dense forest in the southwest of Hongyuan

County are unsuitable areas for establishing pastures with

respect to their soil depths.

Conclusions

Values of the spatial distribution soil depth in Hongyuan

County on the Qinghai Tibet Plateau were determined

using GPR. Validation results showed that GPR measure-

ments were highly correlated with ground-truthed ruler

measurements, and demonstrated that GPR is a suitable

technique for measuring soil depth. An interpolated spa-

tial distribution map of soil depth in Hongyuan County

was produced with the aid of OK. This procedure

demonstrated the high accuracy and non-destructive fea-

tures of GPR, providing a more systematic and fully spa-

tial distribution map of soil depth than the previous

grassland soil survey done in the 1980s.

To create even more accurate maps of soil depth, greater

numbers of samples need to be measured in areas where

slopes are greater than 12°. Additionally, the proposed

GPR technique should be combined with conventional soil

depth measurement methods (such as the profile and rod

methods) in GPR abnormal signal places.

These results also provide useful data that can help

inform sustainable and productive pasture creation and

management in the future. For example, in the future,

more new pastures should be established in the north,

east and southwest of Hongyuan County because of the

health of the soil profiles.

Mapping the distribution of soil depth with the aid of

GPR and GIS provides useful information for creating

soil policy aimed at promoting sustainable agriculture

and responsible management of grassland ecosystems.
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