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Research Progress on the Mechanism of N,O Production Based
on Stable Isotopic Methods

LIANG Yue' XIAO Huayun® LIU Xiaozhen® XIE Yajun'

(1. Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution State Key Laboratory Breeding Base of
Nuclear Resources and Environment East China University of Technology Nanchang 330013 China; 2.State Key Laboratory of
Environmental Geochemistry Institute of Geochemistry Chinese Academy of Science Guiyang 550081 China;

3. Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources

Environmental & Chemical Engineering Nanchang University Nanchang 330047 China)

Abstract: N,O is one of the important greenhouse gases however the biogeochemical mechanism of N,O production is still unclear.
Focusing on the microorganism process of N,O production we summarized research progresses of nitration and denitrification of the
N, O production based on the §"°N and "0 double stable isotopes 8" N( “N'’N'°0) and 3" N*( "N'*N'°0) and SP values and mul-
tiple stable isotopes of N,O production and discussed the advantages and disadvantages of above stable isotope techniques. Particular—
ly we described the related theories and reviewed current applications of stable isotopes and isotope isomers of N,O. The "N stable
isotope enrichment factorization and the SP value methods were applied to decide structure magnitude and activities of the N,O produc—
tion microbial community. In the end we discussed the difficulty and shortage of the mechanism study on the N,O production by using
stable isotopes.

Key words: N,O; mechanism; stable isotope; research progress



