N₂O产生机制的同位素方法研究进展

梁 越¹,肖化云²,刘小真³,谢亚军¹

(1.东华理工大学 江西省大气污染成因与控制重点实验室 南昌 330013; 2.中国科学院地球化学研究所 环境地球化学 国家重点实验室 贵阳 550081; 3.南昌大学 资源环境与化工学院 鄱阳湖环境与资源利用教育部重点实验室 南昌 330047)

摘 要: N_2O 是一种重要的温室气体 ,是由多种微生物的硝化与反硝化作用产生 ,但是它产生的生物地球化学机制还不十分 清楚。本文结合 N_2O 产生的微生物过程 ,阐述了国内外利用同位素标记法、 N_2O 的 $\delta^{15}N$ 和 $\delta^{18}O$ 双同位素法、 N_2O 的 $\delta^{15}N^{\alpha}$ ($^{14}N^{15}N^{16}O$) 和 $\delta^{15}N^{\beta}$ ($^{15}N^{14}N^{16}O$)、SP 值同位素异构体法以及多种同位素法相结合研究 N_2O 的产生机制及微生物过程 ,比较了 这些方法的优缺点 ,尤其重点阐述了近些年来兴起的 N_2O 同位素异构体计算各过程贡献比例及其判别源与汇的理论及其应 用。 ^{15}N 同位素富集因子法和 SP 值法也分别应用于产生 N_2O 的微生物群落结构、数量和活性变化的研究 ,以从根本上达到控 制 N_2O 排放量的目的。同时指出同位素方法研究 N_2O 产生机制的困难和不足。

关键词: N₂O; 机制; 同位素; 进展

中图分类号: X142 文献标识码: A 文章编号: 1672-9250(2018) 06-0606-07 doi: 10.14050/j.cnki.1672-9250.2018.46.136

N₂O 在平流层形成 NO 自由基与 O₃ 发生反应 而破坏臭氧层^[1] 是一种重要的温室气体。单个分 子 N₂O 引起全球变暖的效率是 CO₂ 的 206 倍 ,且对 流层 N₂O 浓度每年增加约 0.26%^[2]。目前国内外 对 N₂O 产生机制的研究还存在很大的不确定 性^[3-4] 是全球变暖重大研究领域的一个重要热点。 N₂O 的来源广泛 其最大的释放源为农业和森林自 然土壤环境,占50%以上[2],其他的释放源包括海 洋、河口、河流、地下水、湿地、草地和湖泊等水环 境。地表水环境氧恢复条件好,易发生硝化反应, 而缺氧条件如沉积物-水界面则易发生反硝化反 应^[5], N₂O 是这些硝化和反硝化过程的中间产物, 是地表氮循环的重要过程。N₂O 产生的复杂过程与 地表环境中的有机氮、铵态氮、硝态氮等含氮化合 物密切相关,也与氧含量、温度等环境因素密切相 关 $^{[6-7]}$ 。深入研究 N_{2} O 产生的硝化和反硝化作用机 制 探索 N₂O 释放的源与汇 ,有助于了解地表环境 中氮的生物地球化学过程,更加准确地评价氮循环 的总体环境效应,也为控制 N₂O 的排放提供理论和 技术支持。

1 产生 N_2O 的微生物过程

释放到大气中的 N₂O 有 70% 来自干微生物的 硝化和反硝化作用,N₂O 是这些微生物过程中的 副产物:(1) 硝化作用 N₂O 由好氧氨氧化细菌^[8-9] (AOB) 和氨氧化古菌^[10](AOA) 在羟胺(NH,OH) 氧化成 NO₂ 期间产生(NH₃→NH₂OH→N₂O);(2) 硝化细菌脱氮作用,N₂O是由厌氧氨氧化细菌将 NO_2^- 反硝化生成 ($NH_4^+/NH_3 \rightarrow NO_2^- \rightarrow NO/N_2/$ N₂O);(3) 反硝化作用 _{N₂O} 是异养反硝化细菌在 厌氧条件下将 NO3 转变成 N。过程的中间产物 (NO₃→NO₂→NO→N₂O→N₂)^[11];另外,硝酸盐 异化还原为铵盐的同化作用过程也可能产生 N₂O。反硝化作用在厌氧条件下进行,当前被认为 是主要的 N_2O 微生物源^[12]。可见,产生 N_2O 的微 生物源具有多样性。但是,硝化细菌脱氮作用倾 向于出现在高氮、低碳和低氧的环境中^[9]; 硝酸盐 异化还原为铵盐的过程在淡水生态系统中则比较 少见^[13]。

收稿日期: 2018-03-29; 改回日期: 2018-07-10

基金项目: 国家自然科学基金项目(41563001);国家重大研究与开发项目(2016YTA0601000);江西省科技厅重大项目(20161ACG70011);江 西省青年科学基金项目(20171BAB214010);东华理工大学核资源与环境国家重点实验室培育基地自主基金项目(Z1610)。

第一作者简介:梁越(1974-),女 博士,主要研究方向为环境地球化学、大气污染成因与控制。E-mail: liangyue@ecit.cn.

2 N_2O 产生机制的研究

2.1 乙炔抑制法和同位素标记法

过去对 N_2O 释放有关硝化作用和反硝化作用 机制的研究大都基于乙炔抑制法^[14]。如 Klemedtsson等^[15]发现10 Pa的 C_2H_2 可用于抑制硝 化作用,而10 KPa的 C_2H_2 可用于硝化作用和反硝 化作用过程的 N_2O 还原研究。但这种方法具有很 大的不可靠性,因为: (1) C_2H_2 分解; (2) 在 O_2 参与 下,高浓度的 C_2H_2 催化 NO氧化成 NO_2^- ; (3) 如果 C 限制, C_2H_2 就会作为基质被反硝化过程利用; (4) 硝酸盐氨化作用的抑制; (5) 在一定条件下 C_2H_2 的 扩散会受到限制^[16]。同位素标记法易受示踪剂的 不完全扩散和加入标记物质本身刺激的影响。

2.2 N₂O 稳定同位素法

不同源产生的 N_2O 应该伴随有不同的同位素 信号,比如农业无机肥料源产生的 N_2O 比自然森林 土壤源产生的 N_2O 明显亏损¹⁵N 同位素。如果了解 这些源释放到大气中的 N_2O 的同位素信号,那么就 能解释对流层中观察到的 N_2O 同位素变化趋势,并 估算不同来源变化的量。

2.2.1 N₂O 的双同位素法

 N_2O 的双同位素($\delta^{15}N$ 和 $\delta^{18}O$) 是一个强大的 示踪 N_2O 生物地球化学过程的工具^[17-19] ,能有效辨 别 N_2O 源(自然和人为)和 N_2O 产生的微生物 过程^[20-22]。

不同源排放的 N₂O 的双同位素组成不同,如不 同类型土壤中硝化和反硝化作用产生的 N₂O 相对 于对流层大气 N₂O 明显亏损¹⁵ N 和¹⁸ O^[23-24],而海 洋、河流等水体以及非微生物源(如生物质燃烧、化 石燃料的燃烧等) 排放的 N_2O 在同位素组成上很接 近对流层大气 $N_2 O^{[23,25]}$ 。 $N_2 O$ 源同位素信号的不 同可以用于建立这些源对对流层 N₂O 的相对贡献, 对于制定减少 N_2O 释放的措施是很有价值的。 N_2O 的 δ^{18} O 在一定程度上也能用来研究 N₂O 产生的微 生物过程^[26-28],例如在细菌培养实验中,硝化细菌 (AOB) 参与 NH₄⁺ 氧化的 N₂O 的 δ¹⁸ O 为 23.5 ± 1.3‰,比 NH₂OH 氧化的 N₂O 的 δ¹⁸ O (38.8 ± 2.4‰) 偏负; 硝化细菌脱氮作用产生的 N_2O 的 $\delta^{18}O$ 为 9.8±1.5‰; 反硝化细菌产生的 $N_{2}O$ 的 $\delta^{18}O$ 为 34.9±6.1‰ 这些 δ^{18} 0 明显的差异可以用来判别 N_20 产生的微生物过程^[29-30]。但是在自然条件下, 需考虑水中的氧原子与 NO₂⁻ 和 NO₃⁻ 中氧原子发生 交换对 δ^{18} O 的影响,比如 NH₃→NO₂⁻ 过程的氧交换 值在 1‰ ~ 25‰; NO₂⁻ → NO₃⁻ 过程的氧交换值为 3‰^[31]。硝化或反硝化过程产生的 N₂O 比它的前 体物 (NH₄⁺, NO₃⁻) 更亏损¹⁵N 和¹⁸O (优先利用轻同 位素),但两者同位素的分馏程度不同,从硝化到反 硝化的转换能明显升高 N₂O 的 δ^{15} N 和 δ^{18} O (δ^{15} N 增加 20‰ ~ 50‰ δ^{18} O 增加 10‰ ~ 25‰^[27],也就是 说反硝化作用产生的 N₂O 比硝化作用产生的 N₂O 有更高的 δ^{15} N 和 δ^{18} O^[29],结合 O₂ 的浓度,能较好 地区分硝化和反硝化作用。Xiong 等^[32]利用 N₂O 的 δ^{15} N 和 δ^{18} O 研究种植小麦的土壤,发现反硝化 过程是冬季小麦土壤释放 N₂O 的主要过程。

2.2.2 同位素异构体 δ¹⁵N^α 和 δ¹⁵N^β 法

N₂O 同位素异构体 δ¹⁵ N^α(¹⁴ N¹⁵ N¹⁶ O) 和 δ¹⁵ N^β (¹⁵N¹⁴N¹⁶O) 为识别 N₂O 产生的微生物过程信息提 供了更好的途径。由于产生 N₂O (NH₂OH,NO, NO₂) 的前体只含有一个 N 原子,这个¹⁵ N 即 N₂O 分 子内的 α 位置(¹⁴ N¹⁵ N¹⁶ O),而 β 位置(¹⁵ N¹⁴ N¹⁶ O) 主要由生物化学反应过程引起的 N-O 断裂决定^[33], 意味着不同的微生物过程和功能群展示不同的¹⁵ N 位置偏好^[34-35],可以用 SP(SP=δ¹⁵ N^α – δ¹⁵ N^β) 作为 N₂O 产生的微生物过程的示踪指标^[36-37]。

据报道 SP 不受物质同位素的支配^[38],如在纯 培养实验中增加前体物(NH4, NO3)的同位素,使 产生的 N₂O 的 δ^{15} N^{bulk}(δ^{15} N^{bulk} = (δ^{15} N^{α} + δ^{15} N^{β}) /2) 增加了 96% ,而 SP 仅增加了 0.003% ,几乎保持不 变^[39] 因此 SP 这个新示踪指标的一个优点是不需 要了解前体物的氮同位素组成 ,就能独立的用于区 分每一种氮的微生物过程。Yano 等^[40] 利用 SP 研 究稻田灌溉,发现 N₂O 在水淹过程排放量快速增 加,且来源于反硝化过程。一般来讲,单独的硝化 与反硝化过程产生 N₂O 的 SP 具有较为明显的区 别^[38] 而反硝化过程与硝化-反硝化过程(NO₂ 还 原成 N_2O)的 SP 均为负值且较为接近^[40]。例如 在 实验室纯培养研究中硝化和反硝化作用产生的 N₂O 的 SP 有显著差异, 羟胺氧化产生的 N₂O 的 SP 为 30.8 ± 5.9‰~36.3 ± 2.4‰; 硝化细菌脱氮作用产 生的 N₂O 的 SP 为-10.7±2.9‰~0.1±1.7‰; 反硝 化作用产生的 N₂O 的 SP 为-5‰~0‰^[41]。Yano 等^[40]的纯培养实验发现以羟胺氧化为主的硝化作 用过程产生的 N₂O 的 SP 为 31‰。Toyoda 等^[42] 在

一个生物废水处理厂的有氧槽里测得 N_2O 的 SP 值 为 4.5‰ 表明由羟胺氧化产生的 N_2O 贡献是不重 要的。Decock 等^[43] 把 SP 分为 N_2O_N (羟胺氧化作 用 $SP = 32.8 \pm 4.0\%$) 和 N_2O_D (硝化细菌脱氮作用 和反硝化作用 $SP = -1.6 \pm 3.8\%$)。SP 值的测定对 于 N_2O 产生来源的识别是非常有用的工具,如果知 道硝化反应的 SP_{nit} 和反硝化反应的 SP_{denit} 就可以计 算它们对 N_2O 的相对贡献($SP = X \times SP_{nit} + (1-X) \times SP_{denit} X$ 为贡献比例)^[3]。

N₂O 的 δ¹⁵N^α 和 δ¹⁵N^β 与 δ¹⁸O 的相关性也可以 用来判别 N₂O 还原为 N₂ 的程度或者说 N₂O 的消耗 (当反硝化进行到一定程度)。因为 N₂O 还原为 N₂ 首先破坏 N^α-O 键(动力学效应首先破坏轻同位 素) 剩下的 N₂O 富集¹⁸O 和¹⁵N^α,这就导致 δ¹⁸O 和 δ¹⁵N^α 有正的相关性,而 δ¹⁸O 与 δ¹⁵N^β 或者 δ¹⁵N^{bulk} 则没有的相关性。Park 等^[3]在自然雨林土壤和农 业土壤的实验里证实了 N₂O 的消耗与它的同位素 组成有这样的对应关系。N₂O 还原为 N₂ 的同位素 分馏程度也可以用瑞利分馏模型来估算 δ^x - δ^x₀ = ε^x ×ln([N₂O]/ [N₂O]₀) κ = ¹⁸O 或¹⁵N^α, ε^x 是分馏系 数(‰) ρ 表示起始值, 1 -([N₂O]/[N₂O]₀) 就是 N₂O 消耗的分数。

2.2.3 多种同位素法

 N_2O 的双同位素($\delta^{15}N^{bulk}$ 和 $\delta^{18}O$)及其同位素 异构体 $\delta^{15} N^{\alpha}$ 和 $\delta^{15} N^{\beta}$ 是近些年来在国际上兴起的 研究 N₂O 形成机制和来源的一种有效手段^[27],主 要用于海洋^[44]、农业土壤^[45]和细菌培养实验^[46] 等。如果以 N₂O 的 δ^{15} N 和 δ^{18} O₅SP 为主要研究手 段 结合它产生的前体物相应的氮氧同位素 δ^{15} N- NH_{4}^{+} , $\delta^{15}N-NO_{2}^{-}$ 和 $\delta^{18}O-NO_{2}^{-}$, $\delta^{15}N-NO_{3}^{-}$ 和 $\delta^{18}O-NO_{3}^{-}$ 等来研究硝化与反硝化过程,将很大程地提升氮循 环机制理论基础^[49]。Casciotti 等^[47] 利用 NO₃ 和 NO_2^- 的 $\delta^{15}N$ 和 $\delta^{18}O$ 对海洋缺氧区进行研究 ,发现 NO_2^- 硝化过程是 NO_2^- 的主要消耗过程 并显著影响 了 NO_3^- 的 $\delta^{15}N$ 和 $\delta^{18}O_{\circ}$ Peters 等 [48] 结合 $\delta^{15}N$ - NO_2^- 和 δ^{18} O-NO₂, δ^{15} N-NO₃ 和 δ^{18} O-NO₃, δ^{15} N-N₂O 和 δ¹⁸O-N₂O 以及 SP 对南极土壤和湖泊进行研究 ,发 现 Labyrinth 的 δ^{15} N-N₂O 和 δ^{18} O-N₂O 以及 SP 落在 NH,OH 氧化和 NO5 反硝化过程产生 N,O 的值之 间,认为 Labyrinth 的 N₂O 来源于 NH₂OH 氧化和 NO⁵ 反硝化过程; Lake Vanda 的 SP 落在硝化过程 与硝化-反硝化过程之间,认为 Lake Vanda 的 N₂O

来源于硝化过程与硝化-反硝化过程。Tumendelger 等^[49]利用 SP 的测定得出废水处理系统中 N_2O 来 自于 NH₂OH 氧化的贡献小于 40%,而来自于 NO₂ 还原的贡献大于 60%。因此,多种同位素手段相结 合 将能更好地反映 N_2O 产生的不同微生物过程。 稳定同位素示踪技术的研究将大大提高对 N_2O 产 生和释放过程的认识和对 N_2O 源的识别。

2.3 N₂O 同位素的测定

同位素质谱仪能够测定 N_2O 的浓度和 $\delta^{15}N^{bulk}$ 、 $\delta^{18}O_{\lambda}\delta^{15}N^{\alpha}$ 和 $\delta^{15}N^{\beta}$ 值 精度好于 0.1‰。 N_2O 同位 素异构体 $\delta^{15}N^{\alpha}$ 和 $\delta^{15}N^{\beta}$ 最早由日本科学家发现并 在日本用同位素质谱仪测定^[21]。

最近由美国生产的 N_2O 同位素分析仪可在野 外变化的环境条件下持续在线监测 N_2O 的浓度、 $\delta^{15}N^{bulk}$ 、 $\delta^{18}O$ 及同位素异构体 $\delta^{15}N^{\alpha}$ 和 $\delta^{15}N^{\beta}$ 值, N_2O 回收率>99%,无同位素分馏或其它气体成分干 扰^[45,50],是研究 N_2O 形成机制和来源的一种有效手 段,目前已在土壤、草地、废水等多个环境中得到 应用^[50-52]。

3 应用同位素技术研究产生 N₂O 的 微生物群落组成

微生物群落结构和稳定同位素都是研究环境 系统中 N_2O 产生过程和机制的重要工具,也都是 判别 N_2O 产生的硝化与反硝化过程的重要手段, 对环境因素(如气候、湿度、温度)的变化都很敏 感。国际上已逐步利用同位素技术研究产生 N_2O 的微生物群落组成,试图通过监测 N_2O 同位素信 号预测产生 N_2O 的微生物群落结构、数量和活性 的变化,以从根本上达到控制 N_2O 排放量的 目的。

3.1 ¹⁵N 同位素富集因子法

N₂O 是由不同的前体物质经过不同的微生物 群落转化而来,如硝化作用是由前体物质 NH⁴ 经 过氨氧化细菌转化成 N₂O,反硝化作用是由前体 物质 NO³ 经过反硝化细菌转化成 N₂O,期间¹⁵N 同 位素富集因子(ε)能够区分这些微生物路径^[2],就 是说不同前体物质的¹⁵N 经过不同细菌反应产生 的 N₂O 的¹⁵N 同位素不同。例如,细菌纯培养实验 表明,氨氧化细菌作用的 ε 为-66.5~-45.3^[41], 比反硝化细菌作用的 ε (-37~-10)更小^[41],厌氧 氨氧化细菌作用的富集因子 ε 为-35.7 ± 2.7^[34] (图 1)。富集因子可以较好地了解微生物群落组 成,但富集因子的测定必须依赖于前体物质的同 位素测定,而且富集因子不是常数,在计算反硝化 富集因子时也受 N₂O 还原为 N₂ 所引起同位素升 高的影响,也就是不能准确判断反硝化微生物贡 献的比例。

图 1 不同微生物过程产生 N₂O 的 SP 值及 ¹⁵N 同位素富集因子 ε

Fig.1 Isotopic enrichment factor of $^{15}\mathrm{N}$ and SP of $\mathrm{N_2O}$ production by different microorganisms

3.2 同位素异构体 SP 值法

N₂O 的 SP 可用于研究产生 N₂O 的微生物群 落组成(图1),在细菌纯培养实验中,氨氧化细菌 产生的 N₂O 的 SP 为 30.8±5.9‰~36.3±2.4‰; 厌氧氨氧化细菌产生的 N₂O 的 SP 为-10.7± 2.9‰~0.1±1.7‰; 异养反硝化细菌产生的 N₂O 的 SP 为-5‰~0‰^[41]。这些差异明显的 SP 可以 较好地区分不同的微生物组成^[53]。2015 年 Maeda 等^[54]在真菌培养实验中测得的 SP 为 15.8‰~ 36.7‰,表明真菌反硝化作用也是 N₂O 的重要来 源。2016 年 Nordmann Winther 等^[55] 培养海洋中 不同的反硝化细菌 ,发现两种反硝化细菌产生的 N₂O 具有不同的 SP ,表明两种反硝化细菌在反硝 化过程中产生的 N_2O 机制有所差异。Maeda 等^[56] 在牛堆肥产生的 N₂O 实验中,利用不同的抑制剂 培养细菌、真菌和反硝化细菌,发现这些微生物产 生 N₂O 的 SP 不同,认为 N₂O 主要由 nirK 反硝化 细菌产生,然而,还需要进一步辨别反硝化细菌 SP

的不同是源于 NO 转化成 N_2O 还是共同反硝化的 过程。 N_2O 的 SP 在单独利用时同样存在缺点,在 判别缺氧状态下的厌氧氨氧化细菌和反硝化细菌 的反硝化路径时有所重叠,并不能完全区分这两 个过程^[57]。

4 影响 N_2O 同位素值的主要因素

产生 N₂O 的微生物具有多样性,生物过程的微 生物菌种或菌株的不同是造成 N₂O 的 SP 不同的根 本原因^[22]。而环境因素的改变(如 NH_4^+ 、pH、温度、 O2、含水量等) 会影响微生物的生理过程、群落组成 和硝化活性^[58-59] ,从而影响 N₂O 的释放量和产生过 程(路径)^[4,60]。例如 Cardenas 等 ^[61]研究十壤水 分的饱和度对 N₂O 同位素值的影响,发现土壤水分 含量少时 N₂O 释放量变化较大,可能归因于微生物 对养分的竞争,主要发生硝化作用;当土壤处于干 湿交替时,N₂O的释放量最大,反硝化作用是N₂O 的主要来源;当土壤被水淹没时,水体和土-水界面 硝化和反硝化作用都会发生。郑欠等^[62]在研究土 壤含水量的影响时,发现高含水量的 N₂O 释放量最 高,主要发生硝化作用;中含水量主要发生反硝化 过程;低含水量前期以反硝化为主,后期以硝化作 用为主。土壤水分含量的不同影响微生物不同群 落的硝化与反硝化过程 ,是造成 N₂O 同位素值不同 的主要原因。Mullungal^[63]研究最小氧含量大于10 μm 和大于 130 μm 的两个海洋的 N₂O 释放 发现有 显著不同的 N₂O 释放量和双同位素及同位素异构 体信号,是不同氧条件下 N₂O 形成路径不同的 结果。

5 困难和不足

N₂O 产生的机制还存在很大的不确定性,微 生物纯培养实验在条件控制下完成,难以反映自 然条件下 N₂O 产生的确切路径,同位素方法为 N₂O 产生机制的研究提供了良好的前景。然而, 在自然状态下也难以区分单一微生物群落产生的 特定的同位素值,使得实验室与野外数据存在差 异,因为环境因素的变化对 N₂O 释放量的影响较 大。任何单一技术都会有各自的优缺点,多种手 段相结合,分子生物学技术和多种同位素技术相 结合,可以相互验证 N₂O 产生的硝化与反硝化作 用机制及其相对贡献,也为氮循环提供理论 支持。

参考文献

- Ravishankara A R, Portmann, R W. Nitrous oxide (N₂O): The dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009 326(5949): 123-125.
- [2] Solomon S, Qin D, Manning M, et al. (eds.). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge University Press, 2007.
- [3] Park S, Pérez T, Boering K A, et al. Can N₂O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N₂O production and consumption in tropical soils? [J]. Global Biogeochemical Cycles, 2011, 25(1):1-16.
- [4] Wei J, Zhou M, Vereecken H, et al. Large variability of CO₂ and N₂O emissions and of ¹⁵N site preference of N₂O from reactions of nitrite with lignin and its derivatives at different pH[J]. Rapid Communications in Mass Spectrometry , 2017, 31(16): 1333–1343.
- [5] 吴敬禄,林琳,刘建军,等.太湖沉积物碳氮同位素组成特征与环境意义[J].海洋地质与第四纪地质,2005,25(2):25-30.
- [6] 王仕禄,刘丛强,万国江,等.贵州百花湖分层晚期有机质降解过程与溶解N2O循环[J].第四纪研究,2004,24(5):569-577.
- [7] Wang S, Liu C, Yeager K M, et al. The spatial distribution and emission of nitrous oxide (N₂O) in a large eutrophic lake in eastern China: Anthropogenic effects [J]. Science of the Total Environment, 2009, 407(10): 3330–3337.
- [8] Arp D J, Chain P S G, Klotz M G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria [J]. Annual Review of Microbiology, 2007, 61: 503-528.
- [9] Otte S, Schalk J, Kuenen J G, et al. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis [J]. Applied Microbiology and Biotechnology, 1999, 51(2): 255-261.
- [10] 胡安谊,焦念志. 氨氧化古菌—环境微生物生态学研究的一个前沿热点[J]. 自然科学进展, 2009, 19(4): 370-379.
- [11] Bakken L R, Bergaust L, Liu B, et al. Regulation of denitrification at the cellular level: A clue to the understanding of N₂O emissions from soils [J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2012, 367(1593): 1226–1234.
- [12] Schreiber F, Wunderlin P, Kai M U, et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies [J]. Frontiers in Microbiology, 2012, 319(4): 95–97.
- [13] Scott J T, McCarthy M J, Gardner W S, et al. Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland [J]. Biogeochemistry, 2008, 87(1): 99-111.
- [14] 郑佳,金兰淑,莫旭华,等.乙炔抑制法在硝化与反硝化过程中的应用[J].生物技术,2009,19(4):95-97.
- [15] Klemedtsson L, Svensson B H, Rosswall T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soils [J]. Biology and Fertility of Soils ,1988 β(2): 112-119.
- [16] Watts S H, Seitzinger S P. Denitrification rates in organic and mineral soils from riparian sites: A comparison of N₂ flux and acetylene inhibition methods [J]. Soil Biology & Biochemistry, 2000 32(10): 1383-1392.
- [17] Bernard S, Ckmann T R, Kaiser J, et al. Constraints on N₂O budget changes since pre-industrial time from new firm air and ice core isotope measurements [J]. Atmospheric Chemistry and Physics, 2006 b(2): 493-503.
- [18] Ishijima K, Sugawara S, Kawamura K, et al. Temporal variations of the atmospheric nitrous oxide concentration and its 8¹⁵N and 8¹⁸O for the latter half of the 20th century reconstructed from firm air analyses [J]. Journal of Geophysical Research Atmospheres, 2007, 112 (D3).
- [19] Roeckmann T, Levin I. High-precision determination of the changing isotopic composition of atmospheric N₂O from 1990 to 2002 [J]. Journal of Geophysical Research Atmospheres, 2005, 110(D21).
- [20] Baggs E M. A review of stable isotope techniques for N₂O source partitioning in soils: Recent progress, remaining challenges and future considerations [J]. Rapid Communication in Mass Spectronmetry, 2010, 22 (11): 1664–1672.
- [21] Toyoda S, Yoshida N. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer [J]. Analytical Chemistry, 1999, 71 (20): 4711-4718.
- [22] 林伟, 房福力, 张薇, 等. 稳定同位素技术在土壤 N₂O 溯源研究中的应用[J]. 应用生态学报, 2017, 28(7): 2344-2352.
- [23] Kim K R, Craig H. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global perspective [J]. Science, 1993, 262(5141): 1855 -1857.
- [24] 朱仁斌,刘雅淑,徐华,等.上海-南极洋面大气 N₂O的δ¹⁵N 与δ¹⁸O 时空变化特征[J].中国科学(地球科学),2008(9):1156-1166.
- [25] Ogawa M, Yoshida N. Nitrous oxide emission from the burning of agricultural residue [J]. Atmospheric Environment, 2005, 39(19): 3421 -3429.
- [26] 徐文彬. δ¹⁵N 和 δ¹⁸O 指标识别环境中 N₂O 生成机理[J]. 地球与环境, 1999, 27(2):16-21.
- [27] Bol R, Toyoda S, Yamulki S, et al. Dual isotope and isotopomer ratios of N₂O emitted from a temperate grassland soil after fertiliser application
 [J]. Rapid Communication in Mass Spectronmetry, 2003, 17(22): 2550-2556.
- [28] Sutka R L , Adams G C , Ostrom N E , et al. Isotopologue fractionation during N₂O production by fungal denitrification [J]. Rapid Communications in Mass Spectrometry , 2010 22(24): 3989–3996.

- [29] Decock C, Six J. How reliable is the intramoleculardis tribution of ¹⁵N in N₂O to source partition N₂O emitted from soil? [J]. Soil Biology & Biochemistry, 2013 65: 114-127.
- [30] Kool D M , Muller C , Wrage N , et al. Oxygen exchange between nitrongen oxides and H₂O can occur during nitrifier pathways [J]. Soil Biology & Biochemistry , 2009 A1: 1632–1641.
- [31] Casciotti K L. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation [J]. Limnology & Oceanography , 2010 , 55: 753 -762.
- [32] Xiong, Z Q, Khalil M A K, Xing G, et al. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season [J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2).
- [33] Popp B N, Westley M B, Toyoda S, et al. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N₂O in the oligotrophic subtropical North Pacific gyre [J]. Global Biogeochemical Cycles, 2002, 16(4): 12-1-12-4.
- [34] Sutka R L, Ostrom N E, Ostrom P H, et al. Nitrogen isotopomer site preference of N₂O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath [J]. Rapid Communication in Mass Spectrometry, 2010, 18(12): 1411–1412.
- [35] Wunderlin P, Lehmann M F, Siegrist H, et al. Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment [J]. Environmental Science & Technology , 2013 , 47(3) : 1339–1348.
- [36] Yoshida N, Toyoda S. Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers [J]. Nature , 2000 ,405 (6784): 330-334.
- [37] Pérez T, Trumbore S E, Tyler S C, et al. Identifying the agricultural imprint on the global N₂O budget using stable isotopes [J]. Journal of Geophysical Research, 2001, 106: 9869–9878.
- [38] Toyoda S , Mutobe H , Yamagishi H , et al. Fractionation of N₂O isotopomers during porduction by denitrifiers [J]. Soil Biology & Biochemistry , 2005 , 37(8) : 1535–1545.
- [39] Sutka R L, Ostrom N E, Ostrom P H, et al. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Applied and Environmental Microbiology, 2006,72 (1): 638-644.
- [40] Yano M, Toyoda S, Tokida T, et al. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N₂O at the beginning of paddy field irrigation [J]. Soil Biology & Biochemistry, 2014, 70(2): 66-78.
- [41] Sutka R L, Ostrom N E, Ostrom P H, et al. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Applied and Environmental Microbiology, 2006, 72 (1), 638–644.
- [42] Toyoda S, Suzuki Y, Hattori S, et al. Isotopomer analysis of production and consumption mechanisms of N₂O and CH₄ in an advanced wastewater treatment system [J]. Environmental Science & Technology , 2011, 45 (3) , 917–922.
- [43] Decock C, Six J. How reliable is the intramolecular distribution of ¹⁵N in N₂O to source partition N₂O emitted from soil? [J], Soil Biology & Biochemistry, 2013 65: 114–127.
- [44] McIlvin M R, Casciotti K L. Fully automated system for stable isotopic analyses of dissolved nitrous oxide at natural abundance levels [J]. Limnology & Oceanography Methods, 2010 8(2): 54-66.
- [45] Meijide A, Cardenas L M, Bol R, et al. Dual isotope and isotopomer measurements for the understanding of N₂O production and consumption during denitrification in an arable soil[J]. European Journal of Soil Science, 2010 61: 364-374.
- [46] Yamazaki T , Hozuki T , Arai K , et al. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria [J]. Biogeosciences , 2014 ,11(10): 2679–2689.
- [47] Casciotti K L, Buchwald C, Mcilvin M. Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone [J]. Deep Sea Research Part I Oceanographic Research Papers 2013 & (5): 78–93.
- [48] Peters B, Casciotti K L, Samarkin V A, et al. Stable isotope analyses of NO₂⁻, NO₃⁻, and N₂O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica [J]. Geochimica et Cosmochimica Acta, 2014, 135(7): 87–101.
- [49] Tumendelger A, Byambadorj T, Bors C, et al. Investigation of dissolved N₂O production processes during wastewater treatment system in Ulaanbaatar[J]. Mongolian Journal of Chemistry, 2017, 17(43): 23–27.
- [50] Lee A, Winther M, Priemé A, et al. Hot spots of N₂O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils [J]. Soil Biology & Biochemistry, 2017, 115: 178–186.
- [51] Banik G D, Som S, Maity A, et al. An EC-QCL based N₂O sensor at 5.2 μm using cavity ring-down spectroscopy for environmental applications [J]. Analytical Methods, 2017, 9(15): 2315-2320.
- [52] Yamazaki T, Hozuki T, Arai K, et al. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria [J]. Biogeosciences, 2014,11(10): 2679–2689.
- [53] Winther M, Balslev-Harder D, Christensen S, et al. Continuous measurements of nitrous oxide isotopomers during incubation experiments [J]. Biogeosciences, 2018, 15(3): 767-780.
- [54] Maeda K , Spor A , Edelhermann V , et al. N2O production , a widespread trait in fungi[J]. Scientific Reports , 2015 , 5.
- [55] Nordmann Winther M, Blunier T, Balslevharder D, et al. Continuous measurements of Nitrous Oxide isotopomers during incubation experiments

[J]. Biogeosciences Discussions, 2016, 16(3): 1-19.

- [56] Maeda K, Toyoda S, Philippot L, et al. Relative contribution of nirK-and nirS-Bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost [J]. Environmental Science & Technology, 2017, 51(24): 14083-14091
- [57] Magyar P M. Insights into pathways of nitrous oxide generation from novel isotopologue measurements [D]. California Institute of Technology , 2017.
- [58] 杨柳燕,王楚楚,孙旭,等:淡水湖泊微生物硝化反硝化过程与影响因素研究[J].水资源保护 2016 32(1): 12-22.
- [59] 王超,单保庆.子牙河水系水和沉积物好氧氨氧化微生物分布特征[J].环境科学学报,2012,32(12):2943-2950.
- [60] Szukics U, Hackl E, Zechmeister-Boltenstern S, et al. Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils [J]. Microbiological Research, 2012, 167(2): 103-109.
- [61] Maritza Cardenas L , Bol R , Lewickaszczebak D , et al. Effect of soil saturation on denitrification in a grassland soil [J]. Biogeosciences Discussions , 2017 , 14(20) : 1–51.
- [62] 郑欠,丁军军,李玉中,等。土壤含水量对硝化和反硝化过程 N₂O 排放及同位素特征值的影响[J].中国农业科学 2017 50(24):4747 -4758.
- [63] Mullungal M N. Oceanic nitrous oxide distribution and production a stable isotopic approach [D]. University of Otago , 2017.

Research Progress on the Mechanism of N₂O Production Based on Stable Isotopic Methods

LIANG Yue¹ XIAO Huayun² LIU Xiaozhen³ XIE Yajun¹

(1. Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; 2.State Key Laboratory of

Environmental Geochemistry , Institute of Geochemistry Chinese Academy of Science , Guiyang 550081 , China;

3. Key Laboratory of Poyang Lake Environment and Resource Utilization , Ministry of Education , School of Resources

Environmental & Chemical Engineering , Nanchang University , Nanchang 330047 , China)

Abstract: N_2O is one of the important greenhouse gases , however , the biogeochemical mechanism of N_2O production is still unclear. Focusing on the microorganism process of N_2O production , we summarized research progresses of nitration and denitrification of the N_2O production based on the $\delta^{15}N$ and $\delta^{18}O$ double stable isotopes , $\delta^{15}N^{\alpha}(^{14}N^{15}N^{16}O)$ and $\delta^{15}N^{\beta}(^{15}N^{14}N^{16}O)$ and SP values , and multiple stable isotopes of N_2O production , and discussed the advantages and disadvantages of above stable isotope techniques. Particularly , we described the related theories and reviewed current applications of stable isotopes and isotope isomers of N_2O . The ¹⁵N stable isotope enrichment factorization and the SP value methods were applied to decide structure , magnitude and activities of the N_2O production by using stable isotopes.

Key words: N₂O; mechanism; stable isotope; research progress