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Abstract: The electrification of dust particles is a common phenomenon in the lunar surface and solar system space
environment. It is an important basis for understanding the formation of lunar horizon glow and deep understanding the
dust environment of lunar surface. In this study pyroxene particles which are representative particles in lunar soil
and cosmic dust are chosen to undertake the experiment of electric charge in an electron gun radiation environment.
Based on the experimental results it is found that micron sized pyroxene particles have electric charges of about 10°
—10%e and the 1-5 microns pyroxene particles are the most susceptible to electric motion. The electric quantity of
charged pyroxene particles increases with the increase of particle size. There are also dramatic differences between
particles of similar size due to different accumulation conditions. According to the maximum power fitting of pyroxene
granule it can be concluded that According to the maximum charged electric quantity fitting of pyroxene particles it
can be concluded that its maximum adsorption capacity is exponentially related to the size of particles and is also
related to the radiation electron energy. Finally the maximum power model of dust particles in the lunar radiation
environment is given by. According to the actual lunar surface conditions the migration height of charged dust
particles is predicted and the most part of the charged movement of dust particles in lunar surface occurs in a few

hundred meters. The results provide a reference for further understanding the electrostatic migration and dust
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environment of the lunar surface dust. A maximum charged power model of dust particles in lunar radiation

environment is finally proposed by fitting the experimental data. According to the actual lunar surface conditions the

migration height of the charged dust particles is predicted and the most part of the charged movement of dust particles

in lunar surface occurs in several hundred meters. The results provide a reference for further understanding the

electrostatic migration and dust environment of the lunar dust.

Keywords: pyroxene; charging; particle size; height of migration; Moon
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Fig.2. Percentage ( left) and quantity ( right) of various sized grains measured by the Doppler system.
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(h=6 mm) (1v) E=41.38 V/m
Fig.3. Charging characteristics of pyroxene particles under conditions of various electron energy radiation.
In the experiment the focus of the Doppler system is 6 mm above the sample (h=6 mm) and the

intensity of electric field can be calculated based on the measured electric potential of sample holder

with result of 41.38 V/m ( E=41.38 V/m) .
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Fig.4. The fitted exponential relationships between the maximum charged quantity and the size of

pyroxene particles under conditions of various electron energy radiations.
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