胶东寺庄金矿热液蚀变作用与元素迁移规律

卫清¹ 范宏瑞^{2 ,4*} 蓝廷广³ 刘玄²

 中国地震局 地壳应力研究所,北京 100085; 2. 中国科学院 矿产资源研究重点实验室,中国科学院 地质与 地球物理研究所,北京 100029; 3. 矿床地球化学国家重点实验室,中国科学院 地球化学研究所,贵阳 550081;
 4. 中国科学院大学 地球科学学院,北京 100049

摘 要:为探讨胶东寺庄金矿热液蚀变相关的元素活动规律、蚀变机理及其与矿化的关系,对其花岗质围岩的蚀变带进行了 研究。结果显示,伴随着金的矿化,在主断裂的上下盘及矿体附近发育比较典型的钾长石化、绢英岩化、硅化、黄铁绢英岩化 蚀变带;伴随强烈的矿物交代反应,各蚀变岩的主微量元素发生了较为明显的改变,大离子亲石元素 Rb 和轻稀土元素 La 和 Ce 表现出了一定的活动性,过渡族元素 Cr、Co、Ni、Cu 等的地球化学行为在蚀变过程中可被强烈改变,重稀土及高场强元素 (Ta、Ti、Nb 等),在钾长石化过程中也表现出了很强的活动性。寺庄金矿中金最可能以 Au(HS)² 络合物形式被搬运,流体温 度下降及水/岩反应导致含矿热液化学性质的不断变化造成金-硫络合物稳定性的下降,可能是金沉淀的原因。 关 键 词: 热液蚀变; 元素; 寺庄金矿; 胶东

中图分类号: P618.51 文章编号: 1007-2802(2018) 02-0283-11 doi: 10.19658/j.issn.1007-2802.2018.37.030

Hydrothermal Alteration and Element Migration in the Sizhuang Gold Deposit , Jiaodong Province , China

WEI Qing¹, FAN Hong-rui²^{, 4*}, LAN Ting-guang³, LIU Xuan²

 Institute of Crustal Dynamics China, Earthquake Administration, Beijing 100085, China; 2.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3.State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 4.College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Sizhuang gold deposit , located at the Zhaoyuan-Laizhou metallogenic belt in the northwestern border of the Jiaodong Peninsula , is a typical fracture-alteration type gold deposit. The gold mineralization is associated with typical diffusive K-feldspar alteration , sericitization , silicification and pyrite-sericite-quartz alteration at the hanging wall or the footwall of the main fault and near the ore bodies. During the fluid-rock interaction processes , the major and trace elements of altered rock were largely changed. LILE (Rb) and LREE (La and Ce) show variable degrees of mobility; TRTE (Cr , Co , Ni , and Cu) are strongly mobile; HREE and HFSE (Ta , Ti , Nb) can also be highly modified during the Kfeldspar alteration. The gold in the Sizhuang gold deposit was most likely transported as Au(HS) ²⁻ complex. When the temperatures of ore-bearing fluid drops or the chemical properties of fluids continuously changed due to water-rock reactions , the stability of Au(HS) ²⁻ complex will be reduced , triggering gold precipitation.

Key words: hydrothermal alteration; element; Sizhuang gold deposit; Jiaodong

胶东矿集区是环太平洋中/新生代金成矿系统的重要组成部分(Goldfarb *et al.*, 1998),目前已探

明特大型金矿床 7 处 ,大型金矿床 8 处 ,中小型金矿 床 100 余处 ,累计探明黄金资源储量在 4×10³ t 以上

收稿编号: 2017-105 ,2017-04-11 收到 ,2017-05-31 改回

基金项目:国家自然科学基金青年基金项目(41602073)

^{*} 通讯作者简介: 范宏瑞(1963-) 男 研究员 研究方向: 岩石学和地球化学. E-mail: fanhr@ mail.iggcas.ac.cn.

(范宏瑞等,2016)。胶东金矿的研究程度较高,关 于矿床的地质特征、成矿年代学、矿田构造、成矿流 体性质及来源,成矿动力学背景等已有了较为系统 的研究成果(陈光远等,1989;林景仟等,1992;李兆 龙和杨敏之,1993; Wang *et al.*,1998; Yang and Zhou,2001; 罗镇宽和苗来成,2002; Qiu *et al.*, 2002; Fan *et al.*,2003; Chen *et al.*,2005; 胡芳芳等, 2006; Li *et al.*,2006; 李世先等,2007; Mao *et al.*, 2008; 蒋少涌等,2009; Wen *et al.*,2016; Xu *et al.*, 2016; Zhang *et al.*,2017)。蚀变岩是成矿流体与围岩 反应的产物 是除流体包裹体外研究成矿流体的又一 有力工具,其对揭示矿床成因具有重要价值,而针对 胶东金矿蚀变岩的研究并不多见,目前仅可见少数研 究成果(凌洪飞等,2002; 陈海燕等,2012; Li *et al.*, 2013; 张炳林等,2014; 张志超等,2015)。

寺庄金矿位于胶东半岛西北部的招远-莱州成 矿带内(图1),已累计探明矿石量1.11×10⁷余吨, 金金属量4.46×10⁴余公斤,平均品位4.01×10⁻⁶(崔 书学等,2006)。寺庄金矿水-岩相互作用强烈,在 新城-焦家主断裂的上下盘及矿体附近发育有蚀变 带(图2),其中主要发育的蚀变类型有钾长石化、绢 英岩化、硅化和黄铁绢英岩化等。笔者在野外地质 观察的基础上,对矿区内勘探钻孔 Z4959 的蚀变 分带特征做了详细研究,并在手标本及显微镜下 区分了寺庄金矿的蚀变类型及矿物组合特征,对 不同蚀变类型的岩石样品进行了元素地球化学分析,探讨了与寺庄金矿热液蚀变相关的元素活动 规律和蚀变机理,以及蚀变与金矿化的关系。

1 区域地质背景

胶东指山东省郯庐断裂以东,半岛突出于渤海 和黄海之间的地区,其在大地构造单元上以米山断 裂为界被进一步划分为胶北地块和胶南造山带两 部分(图1)。胶东大中型金矿多产出于胶北地块, 其中80%的黄金资源集中于招远-莱州成矿带内(Li et al.,2013)。胶北地块前寒武纪基底从下到上分 别为上太古界胶东群、下元古界荆山群、粉子山群 及新生界地层(Tang et al.,2007; Tam et al., 2011)。区内岩浆岩分布广泛,主要为中生代晚侏 罗世玲珑和滦家河花岗岩类,早白垩世郭家岭花岗 闪长岩类以及青山组火山岩和各种脉岩(Wang et al.,1998; Fan et al.,2001; Yang et al.,2004; Hou et al.,2007; Goss et al.,2010)。区内断裂构造发 育,可大致划分为早期近东西向基底构造、北东和 北北东向构造和晚期的北西向断裂。

2 矿床地质背景

寺庄金矿位于莱州市朱桥镇寺庄村一带(崔书 学等 2008) 地处焦家金矿带南段,向西与郯庐(沂 沭)深大断裂带相邻(图1)。区内出露地层自西向

图件修改自 Yang 等(2012) 图 2 新城-焦家成矿带地质图 Fig.2 Geological map of the Xincheng-Jiaojia mineralization belt

东依次为:第四系全新统松散沉积物→胶东群齐山 组变质杂岩→新近系黄县组含煤碎屑岩、泥岩等。 矿区内岩浆岩主要为晚侏罗世玲珑二长花岗岩,主 要分布在焦家断裂带的下盘,与上盘呈断层接触, 少量分布在焦家断裂上盘,侵入到胶东群变质杂岩 中。矿区内构造以脆性断裂为主,褶皱基本不发 育,断裂按走向可分为北东、近南北和北西向3组 (图2),其中北东向的焦家主干断裂带是寺庄矿区 内的一级构造断裂,矿区内延伸约4 km(崔书学等, 2008),其为焦家断裂在寺庄金矿区的出露部分,是 最为重要的控矿断裂(图2中F1)。 受焦家断裂带的控制,寺庄金矿主要属于破碎带蚀变岩型金矿床,其矿石类型分为浸染状黄铁绢英岩型、脉状黄铁绢英岩型和石英硫化物细脉型,最主要的金属矿物为黄铁矿,其与自然金具有密切的共生关系,此外还含有少量黄铜矿、方铅矿、闪锌矿等金属矿物,非金属矿物以石英、绢云母、长石、方解石为主(杨之利等,2007)。 矿区围岩发育有强烈的中低温热液蚀变,从早至晚蚀变类型主要有钾化、绢英岩化、硅化、黄铁绢 英岩化等,且在空间上具有一定分带性。

本文选取寺庄矿区 Z4959 钻孔(图2) 来研究金

矿花岗质围岩的蚀变分带(图3)。Z4959钻孔孔深 -940 m 在-512.5~-640.8 m 见矿,矿体赋存于灰 色黄铁绢英岩化花岗质碎裂岩中。黑-灰黑色断层 泥位于钻孔-502 m 处,由泥质物和石英颗粒组成。 断层上盘为小规模的面状钾长石化带,厚17 m,受 孔深所限,下盘未见钾化蚀变,推测其可能在钻孔 更深处出现。下盘为绢英岩化花岗质碎裂岩带,厚 约10 m 其间穿插较多浸染状、短脉状微粒黄铁矿, 叠加在早期钾长石化之上。绢英岩化花岗质碎裂 岩带之下发育了厚约117 m 的蚀变程度很强的黄铁 绢英岩,此带与金的沉淀密切相关,并在其间可见 厚约12 m 的硅化蚀变带。

3 围岩蚀变岩相学

伴随着含矿热液沿焦家主干断裂的运移上升, 首先,在断层上、下盘发育了面状钾长石化;其次,

在断层的下盘造成绢英岩化,叠加在早期的钾长石 化之上,且其间可见穿插有较多浸染状及短脉状微 粒黄铁矿;再次,发生了小规模的硅化蚀变,常见穿 插有短、细脉状黄铁矿;最后,在焦家主断裂强烈活 动下形成的断层泥封堵了之后上升的成矿流体,在 断层下盘造成强烈的黄铁绢英岩化,并伴随了金的 沉淀(Z4959钻孔未见明显标志着流体活动减弱和 结束的碳酸盐化蚀变)。

3.1 钾长石化

钾长石化矿石手标本呈红色、肉红色(图 4a, 4b),花岗岩中的岩浆钾长石全部或部分转变为热 液钾长石(图 4a)。这些热液钾长石晶体粗大(可达 2~3 cm),多呈半自形-他形,黑云母分解为白云母 和磁铁矿。弱钾化样品可见花岗岩中早期斜长石 被热液钾长石包裹(图 4d),发生强烈钾化蚀变的样 品,斜长石完全被热液钾长石交代,并可见钾长石 包含早期花岗岩石英颗粒及包裹有蠕虫状钠长石 (图 4c)。少量钾长石化与石英±白云母脉体有关 (图 4b),在石英±白云母脉的周围钾长石交代斜长 石,新生的钾长石颗粒较粗大,半自形-他形。

3.2 绢英岩化

绢英岩化矿石手标本呈绿色-白色,主要由绢云 母、石英及钾长石组成,可见少量浸染状黄铁矿(图 5a、5b)。弱绢英岩化样品中黑云母和斜长石被部 分蚀变成绢云母,斜长石的双晶和不均匀消光现象 保留,强烈绢英岩化导致黑云母消失,斜长石完全 被绢云母交代,残留有早期花岗岩石英颗粒(图 5c),并可见热液石英颗粒加大(图 5d)。绢英岩化 过程中伴随少量以黄铁矿为主的硫化物的沉淀,其 呈浸染状分布在岩石中(图 5a)。

3.3 硅化

硅化矿石手标本呈白色-浅绿色,最为特征的是 花岗岩中见有热液石英脉及大的重结晶石英斑晶, 也可见部分绢英岩化蚀变带及颗粒状、细脉状黄铁 矿,可能是其上部分被后来蚀变的黄铁绢英岩化叠 加所致(图 6a、6b)。强烈硅化表现为石英交代了大 部分甚至是完全交代了先前的绢英岩化岩石(图 6c)。随着硅化矿石中石英的形成,一定量的绢云 母和硫化物发生了沉淀(图 6d)。

3.4 黄铁绢英岩化

黄铁绢英岩化矿石手标本呈黑灰色-灰褐色(图 7a) ,其中的石英大多棱角分明,大小不一,以碎斑 形式产出(这类石英可能是残留的早期原生石英, 图 7a) ,少量石英颗粒细小,与绢云母共生(这类石 英可能是长石类矿物在绢英岩化过程中分解的产

(a) 钾长石化样品呈红色、肉红色,主要由钾长石及呈颗粒,短脉状石英组成,可见热液钠长石;(b) 热液钾长石晶体围绕石英±白云 母脉体生长;(c) 强钾化花岗岩,钾长石中包含早期花岗岩石英颗粒及次生呈蠕虫状钠长石(包裹体片,+);(d) 弱钾化花岗岩 早期 花岗岩斜长石颗粒被热液钾长石包裹(包裹体片,+)。 Kf-钾长石; Pl-斜长石; Qz-石英; Mus-白云母; Ab-钠长石 图 4 寺庄金矿 Z4959 钻孔钾化手标本及岩相学照片

Fig.4 Photographs and photomicrographs of alteration assemblages associated with K-feldspar alteration in the borehole Z4959 , the Sizhuang gold deposit

(a、b) 绢英岩化样品呈黄绿色,主要由绢云母、石英及钾长石组成,并可见少量浸染状黄铁矿;(c) 斜长石完全被绢云母 交代,并伴随有早期花岗岩石英颗粒残留;(d) 强绢云母化,热液石英颗粒呈现加大。Ser-绢云母; Qz-石英; Py-黄铁矿 图 5 寺庄金矿 Z4959 钻孔绢英岩化手标本及岩相学照片

Fig.5 Photographs and photomicrographs of alteration assemblages associated with sericitization in the borehole Z4959 , the Sizhuang gold deposit

(a、b) 硅化样品呈白色-浅绿色,主要由石英组成,其间可见绢云母及黄铁矿;(c) 硅化阶段的白板石英(包裹体片,+); (d) 成矿期黄铁矿脉穿插石英(包裹体片,+)。Qz-石英; Py-黄铁矿; Ser-绢云母 图 6 寺庄金矿 Z4959 钻孔硅化手标本及岩相学照片

Fig.6 Photographs and photomicrographs of alteration assemblages associated with silicification in the borehole Z4959 , the Sizhuang gold deposit

(a) 黄铁绢英岩化呈灰褐色 破碎的石英角砾出现其中;(b) 黄铁绢英岩中包含有细脉状的黄铁矿;(c,+)、(d 反射光) 黄铁绢英岩中棱角分明、大小不一的石英角砾 ,及强烈黄铁矿化、绢云母化和硅化。Qz-石英; Py-黄铁矿; Ser-绢云母 图 7 寺庄金矿 Z4959 钻孔黄铁绢英化手标本及岩相学照片

Fig.7 Photographs and photomicrographs of alteration assemblages associated with pyrite-sericite-quartz alteration in the borehole Z4959 , the Sizhuang gold deposit

物);绢云母常呈细脉穿插在岩石空隙中(图7c);黄铁矿大小不一,自形-半自形,是最为常见的硫化物, 多呈浸染状(图7d)和细脉状产出(图7b)。

4 元素的带入、带出

4.1 样品采集与分析方法

为探讨热液蚀变过程中元素的活动性,选取 6 件蚀变岩样品(钾长石化、绢英岩化及硅化各 2 件) 进行主量元素、稀土元素、大离子亲石元素和 U (Schilling, 1973)、高场强元素(Panahi *et al.*, 2000)、过渡族金属元素(Jenner, 1996)的测试,结 果列于表 1。依照 Grant(1986)的方法对元素的活 动性进行描述,将典型蚀变岩及相应"原岩"的元素 含量投在 Isocon 图解上(图 8)。由于黄铁绢英岩化 的岩石存在较多的细脉,无法获得不含脉体的样 品。此外,黄铁绢英岩化既可叠加在之前的硅化之 上,也可能叠加在之前的绢英岩化之上,所以难以 确定其"原岩"。因此,笔者没有将其和相应的某种 原岩在 Isocon 图解上进行比较。

4.2 主量元素带入、带出

元素带入、带出定量计算依据公式(Grant, 1986):

$$\Delta C = \left(C_{immobile}^{F} / C_{immobile}^{A} \right) \cdot C^{A} - C^{F}$$
 (1)

式中 Al_2O_3 被认为是最不活泼的元素; C^F 和 C^A 分 别代表新鲜的和蚀变的岩石中元素的含量; 对主量 元素 ΔC 代表每 100 g 样品中元素的带入、带出量 , 对微量元素 ΔC 代表每 10^6 g 样品中元素的带入、带 出量。不同蚀变类型元素得失量见表 2。

根据表 2 所示结果,不同蚀变带主量元素普遍 表现出高 SiO₂ 及 K₂O,低 Na₂O 的特征。钾化蚀变 带主量元素 K₂O、CaO、FeO、SiO₂ 的含量上升,Na₂O 含量降低(图 8a);绢英岩化蚀变带 Na₂O 的含量降 低,TFeO、MgO 及烧失量升高明显,K₂O 和 SiO₂ 的 含量也表现为升高,这可能由于样品残留少量钾长 石及早期花岗岩石英颗粒所致。另外,斜长石的分 解也造成了 CaO 的降低(图 8b);硅化蚀变带 SiO₂ 含量明显升高,而 Na₂O、CaO、P₂O₅则不同程度降 低,另外,由于样品可能残留有早期钾化岩,K₂O 含 量也表现为升高(图 8c)。

4.3 微量元素带入、带出

寺庄金矿床钾化过程大离子亲石元素 Rb 可替 代 K 赋存于钾长石中,随着花岗岩中长石的分解, 蚀变岩中 Sr 含量明显降低; Zr 和 Hf 在蚀变岩中亏 损明显,可能与锆石分解有关; 热液过程导致 Nb/ Ta、Zr/Hf、Y/Ho 元素对发生一定程度的分馏(表

注: Al 为活动性最弱的元素,以坐标原点和 Al₂O₃ 投点连线,连线 上方为蚀变过程中获得的元素,下方为蚀变过程中丢失的元素 图 8 寺庄金矿蚀变岩原岩及蚀变岩的 Isocon 图解

Fig.8 Isocon-diagrams of the "protolith" (the Linglong granite) versus altered samples

1);过渡族金属元素 Cu、Ni、Cr、Co、V 等在钾长石化 过程中增加明显(图 8a);稀土元素配分模式与花岗 质围岩类似,具明显负 Eu 异常,轻稀土 La 和 Ce 表 现出一定程度的富集,重稀土增加明显(图 9)。绢 英岩化过程 Rb 含量升高,Sr、Ba 含量明显下降(图 8b);高场强元素基本没有表现出活动性;Nb/Ta、 Zr/Hf、Y/Ho 元素对分馏程度小于钾化过程(表 1); 一些过渡金属元素 Cu、Ni、Cr、Co 等在蚀变过程中 增加;稀土元素具明显负 Eu 异常,轻稀土轻微亏损 (La、Ce 除外),重稀土亏损明显(图 9)。硅化过程 Sr 和 Ba 含量降低,Pb 含量略微升高,Rb 则表现

Table 1	Major o	Major oxidesand trace elements for the Linglong granite and altered samples in the Sizhuang gold deposit										
	玲珑	花岗岩					 硅化					
样品号	L	L	Z4959–17	ZK963-4Z	Z4959-6	Z4959–13j	Z4959–12	Z4959–13				
SiO ₂	72.20	70. 70	69.60	73.20	73.00	74.10	76.20	70. 50				
TiO_2	0.13	0.18	0. 20	0.15	0.11	0.15	0.07	0.03				
Al_2O_3	15.00	15.90	14.70	14.40	14.90	13.20	13.10	14.90				
TFeO	1.31	1.36	1.69	1.33	3.26	1.33	0.93	0.47				
MgO	0.14	0.22	0.28	0.17	0.34	0.14	0.10	0.04				
CaO	1.46	1.57	3.00	1.35	0.37	1.26	0.96	0.94				
Na ₂ O	4.76	5.03	3.04	4.31	0.19	3.49	3.73	3.19				
K ₂ 0	3.93	3.10	4.23	4.11	5.94	3.47	3.74	7.49				
$P_{2}O_{5}$	0.03	0.04	0.04	0.03	0.02	0.03	0.01	0.01				
LOI	0.56	0.66	4.08	1.20	2.58	1.70	1.42	0.68				
总计	99.50	99.60	101.00	101.00	101.00	99.10	100.00	98.40				
Sc	1.61	1.29	1.44	1.85	1.39	1.13	1.06	0.44				
V	7.80	6.60	13.70	5.87	6.14	4.17	4.94	2.25				
Cr	172.00	265.00	272.00	369.00	280.00	262.00	362.00	257.00				
Co	2.20	1.80	2.62	3.45	2.28	2.68	2.59	2.46				
Ni	4.80	4, 50	6, 95	8.91	6.30	6.28	8.43	6.02				
Cu	1.90	2.10	2.06	3.02	127.00	5.67	3.25	1.75				
Zn	33.00	12.00	12.80	28.80	14.60	6.92	5.74	5.00				
Ga	22.00	24,00	19.60	22.60	19.00	15.30	17.10	24.50				
Rb	115.00	90, 00	124.00	110.00	183.00	100.00	100.00	183.00				
Sr	599.00	456.00	229.00	584.00	102.00	253.00	201.00	405.00				
Y	7, 70	4, 60	12.90	7.44	1.97	4, 55	3. 50	1. 57				
Zr	83.00	127.00	39, 60	50.90	64. 50	84, 40	48.10	65, 50				
Nb	6, 40	11, 60	9, 86	8.31	4.39	7, 76	3.84	0, 69				
Cs	1. 70	1.50	0.49	0. 83	0. 77	0.42	0.36	0. 71				
Ba	1 371.00	1 765.00	1 185.00	1 758.00	1 276.00	1 071.00	910.00	1 151.00				
La	18.30	14. 70	16. 10	18.60	15.90	17.10	6.92	0. 77				
Ce	30.00	24.30	26.30	29.80	25.50	29.20	11.30	1.30				
Pr	3.72	3.12	2.91	3.40	2.53	3.07	1.32	0.18				
Nd	13.20	11.30	9.82	11.80	9.42	10.30	4.15	0.81				
Sm	2.40	2, 30	1.90	2.13	1.42	1.73	0.71	0.35				
Eu	0.46	0.35	0.39	0.41	0.24	0.45	0.17	0.12				
Gd	1.88	1, 71	1.66	1.69	1. 11	1.26	0.60	0.30				
Tb	0.28	0. 22	0.31	0.26	0.12	0. 18	0.10	0.05				
Dv	1.37	0. 92	1, 76	1. 29	0.38	0. 78	0.58	0. 29				
Ho	0. 26	0.14	0.36	0. 25	0.06	0.14	0.12	0.05				
Er	0.64	0.37	1. 11	0. 72	0.20	0.43	0.40	0.16				
Tm	0.10	0.06	0. 18	0.10	0. 03	0.07	0.07	0. 03				
Yh	0.61	0.37	1.21	0.66	0.24	0.50	0.51	0.17				
Lu	0.10	0.06	0.18	0.10	0.05	0.09	0.08	0.03				
Hf	2 70	4 20	1.25	2 04	1 94	2 32	1 84	4 66				
Та	0.41	0.70	0.65	0.69	0.19	0.18	0.31	0.09				
Ph	31.00	24 00	13,60	29.50	9.98	6 39	19 80	36.70				
Th	5 80	3 70	3 75	4 71	3 08	3 94	2.45	1 14				
U	1.93	1 10	0.61	1.08	0.54	0.73	0.83	0.70				
Zr/Hf	30.80	30 10	31 70	25.00	33 30	36 40	26 10	14 10				
Y/Ho	29,60	32, 80	35 90	29 40	32.80	32, 30	29, 90	31, 40				
Nb/Ta	15.40	16.60	15.20	12.00	23. 70	43.80	12.60	7.97				
δΕυ	0.64	0. 53	0. 68	0.66	0. 59	0.93	0.80	1. 18				
Σ REE	73.20	59.80	64.20	71.20	57.20	65.30	27.00	4. 59				

表1 玲珑花岗岩及寺庄金矿蚀变岩主、微量元素数据

290

注:* 玲珑花岗岩数据引自李晓春(2012);主量元素单位为% 微量元素单位为×10⁻⁶。

			0						0.0			
蚀变类型	钾长石化	绢英岩化	硅化	蚀变类型	钾长石化	绢英岩化	硅化	蚀变类型	钾长石化	绢英岩化	硅化	-
SiO_2	4.45	9.38	9.41	Zn	-0.37	-10.70	-16.60	Y	4.67	-2.57	-3.35	_
TFeO	0.27	1.19	-0.56	Rb	22.00	53.00	53.60	La	1.96	1.63	-12.30	
MgO	0.06	0.08	-0.10	\mathbf{Sr}	-95.10	-332.00	-193.00	Ce	2.69	2.91	-20.20	
CaO	0.80	-0.62	-0.47	Cs	-0.90	-0.94	-1.01	Pr	-0.06	-0.34	-2.59	
Na_2O	-0.99	-2.87	-1.08	Ba	-2.73	-278.00	-431.00	Nd	-0.75	-1.41	-9.52	
K ₂ O	0.92	1.66	2.68	$^{\rm Pb}$	-4.58	-18.50	3.67	\mathbf{Sm}	-0.21	-0.62	-1.77	
P_2O_5	0.00	-0.01	-0.02	U	-0.62	-0.82	-0.67	Eu	0.02	-0.03	-0.24	
LOI	2.20	1.74	0.55	Th	-0.25	-0.89	-2.77	Gd	-0.01	-0.49	-1.30	
Sc	0.30	-0.07	-0.62	Hf	-1.70	-1.11	0.14	Tb	0.05	-0.09	-0.17	
V	3.21	-1.54	-3.23	Та	0.16	-0.36	-0.34	Dy	0.48	-0.51	-0.67	
Cr	122.00	79.30	123.00	TiO_2	0.03	-0.01	-0.10	Ho	0.13	-0.09	-0.11	
Co	1.23	0.73	0.79	Ga	-0.56	-4.15	-0.05	Er	0.47	-0.16	-0.20	
Ni	3.79	2.26	3.32	Zr	-56.90	-23.20	-42.30	Tm	0.07	-0.03	-0.03	
Cu	0.70	70.90	0.76	\mathbf{Nb}	0.66	-2.32	-6.50	Yb	0.50	-0.09	-0.12	
								Lu	0.07	-0.01	-0.02	

	表 2	寺庄金矿热液蚀变过程中主、	微量元素平均得失量	
Table 2	Calculated gains	and losses of the different alte	eration zones in the Sizhu	ang gold deposit

注: 主量元素单位为% 微量元素单位为×10⁻⁶。

Fig.9 Chondrite-normalized REE patterns for sample undergone K-feldspar alteration , sericitization , silicification in the Sizhuang gold deposit , and REE pattern for the Linglong granite is also shown for comparison

出较强的活动性; 高场强元素 Zr、Nb、Th 和 Ta 强烈 丢失, Hf 和 Ga 基本不变(图 8c); Nb/Ta、Zr/Hf、Y/ Ho 元素对发生一定程度的分馏(表 1); 过渡金属 Cr、Co、Ni 和 Cu 在硅化过程中表现为增加,稀土元 素在硅化过程强烈丢失,并显示中等程度的正 Eu 异常(图9),这可能与富集稀土副矿物的分解有关。

5 讨论

前人研究认为热液金矿床中的 Au 主要以 Au-氯络合物和金-硫络合物形式在热液中迁移 (Henley,1973; Kyle and Seward,1984; Seward and Tulloch,1991)。而在中低温弱酸性流体中,Au 最 可能以Au(HS);形式被搬运(李晓春,2012)。寺 庄金矿成矿流体为中低温(133~310℃)、中低盐度 (0%~12%)的H₂O-CO₂-NaCl体系(卫清等 2015), 其成矿前及成矿期均发育有 H₂O-CO₂ 型流体包裹 体的事实,以及代表相对弱酸性条件的绢云母的存 在 均暗示寺庄金矿中的 Au 最有可能以 Au(HS) 5 络合物的形式迁移。随着成矿流体的不断演化,成 矿流体的物理化学性质(t_p, f_0, pH 值、热液化学性 质等)逐渐改变 破坏了金-硫络合物的稳定条件 使 得 Au 的溶解度降低进而从热液中析出,Au 的沉淀 与黄铁绢英岩化密切相关。一方面,寺庄金矿金沉 淀期间出现过明显的温度下降,流体包裹体显微测 温获得的成矿前流体均一温度为 185~345 ℃ 成矿 期流体均一温度为 133~310 ℃(卫清等 2015);另 一方面 含矿流体沿断裂带运移并与围岩发生水-岩 反应 改变了残余热液的化学组成 ,进而导致含矿 热液化学性质发生改变。

6 结论

(1)寺庄金矿具有明显的钾化、绢英岩化及硅 化蚀变带,在热液作用下,在断层下盘发育了规模 巨大的黄铁绢英岩化蚀变带,蚀变反应强烈,不同 程度地改造了之前的岩浆岩结构和矿物组成。

(2)伴随强烈的矿物交代反应,蚀变岩的主量 元素组分明显改变,大离子亲石元素 Rb 和轻稀土 元素 La 和 Ce 具有一定的活动性,大部分过渡族元 素 Cr、Co、Ni、Cu 等均表现出很强的活动性,重稀土 及高场强元素也有不同程度的活动性。

(3) 寺庄金矿成矿流体属中低温弱酸性流体,

Au 在其中最可能以 Au(HS) ½ 络合物的形式被搬运 ,金沉淀期间流体温度下降以及流体沿断裂运移 过程中与围岩发生较深程度的水-岩反应 ,导致含矿 热液化学性质不断变化可能是金沉淀的原因。

致谢:野外工作得到山东黄金地质矿床勘查有 限公司金念宪工程师的指导和协助,蔡亚春博士在 实验室内样品制备过程中给予指导,在此一并致谢!

参考文献(References):

- Chen Y J , Pirajno F , Qi J P. 2005. Origin of gold metallogeny and sources of ore-forming fluids , Jiaodong Province , eastern China. International Geology Review , 47(5): 530–549
- Fan H R , Zhai M G , Xie Y H , Yang J H. 2003. Ore–forming fluids as– sociated with granite–hosted gold mineralization at the Sanshandao deposit , Jiaodong gold Province , China. Mineralium Deposita , 38 (6): 739–750
- Fan W M , Guo F , Wang Y J , Lin G , Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China. Physics and Chemistry of the Earth , Part A: Solid Earth and Geodesy , 26(9-10): 733-746
- Goldfarb R J , Phillips G N , Nokleberg W J. 1998. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geology Reviews , 13 (1-5): 185-218
- Goss S C , Wilde S A , Wu F Y , Yang JH. 2010. The age ,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane , Shandong Province , North China Craton. Lithos , 120(3-4): 309-326
- Grant J A. 1986. The Isocon diagram-a simple solution to Gresens equation for metasomatic alteration. Economic Geology , 81 (8) : 1976 -1982
- Henley R W. 1973. Solubility of gold in hydrothermal chloride solutions. Chemical Geology , 11(2): 73-87
- Hou M L , Jiang Y H , Jiang S Y , Ling H F , Zhao K D. 2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwesterm Jiaodong Peninsula , east China: implications for crustal thickening to delamination. Geological Magazine , 144(4): 619-631
- Jenner G A. 1996. Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In: Wyman D A, Ed. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada Short Course Notes , 12: 51–77
- Kyle P R , Seward D. 1984. Dispersed rhyolitic tephra from New Zealand in deep-sea sediments of the Southern Ocean. Geology , 12(8): 487-490
- Li J W , Vasconcelos P M , Zhou M F , Zhao X F , Ma C Q. 2006. Geochronology of the Pengjiakuang and Rushan gold deposits , Eastern Jiaodong Gold Province , Northeastern China: Implications for regional mineralization and geodynamic setting. Economic Geology , 101(5): 1023–1038
- Li X C , Fan H R , Santosh M , Hu F F , Yang K F , Lan T G. 2013. Hy-

drothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit , Jiaodong Gold Province , China. Ore Geology Reviews , 53: 403-421

- Mao J W , Wang Y T , Li H M , Pirajno F , Zhang C Q , Wang R T. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geology Reviews , 33(3-4): 361-381
- Panahi A , Young G M , Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie , Québec , Canada. Geochimica et Cosmochimica Acta , 64 (13): 2199–2220
- Qiu Y M , Groves D I , McNaughton N J , Wang L G , Zhou T H. 2002. Nature , age , and tectonic setting of granitoid-hosted , orogenic gold deposits of the Jiaodong Peninsula , eastern North China craton , China. Mineralium Deposita , 37: 283–305
- Schilling J G. 1973. Iceland Mantle Plume: geochemical study of Reykjanes ridge. Nature , 242(5400) : 565-571
- Seward D , Tulloch A J. 1991. Fission-track analysis of tertiary uplift history of granitic basement in the Victoria range , West Coast , New Zealand. New Zealand Journal of Geology and Geophysics , 34(2): 115-120
- Tam P K , Zhao G C , Liu F L , Zhou X W , Sun M , Li S Z. 2011. Timing of metamorphism in the Paleoproterozoic Jiao – Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites , gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research , 19(1): 150–162
- Tang J , Zheng Y F , Wu Y B , Gong B , Liu X M. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research , 152(1-2): 48-82
- Wang L G , Qiu Y M , McNaughton N J , Groves D I , Luo Z K , Huang J Z , Miao L C , Liu Y K. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula , China , from SHRIMP U-Pb zirconstudies of granitoids. Ore Geology Reviews , 13(1-5): 275-291
- Wen B J , Fan H R , Hu F F , Liu X , Yang K F , Sun Z F , Sun Z F. 2016. Fluid evolution and ore genesis of the giant Sanshandao gold deposit , Jiaodong gold province , China: Constrains from geology , fluid inclusions and H-O-S-He-Ar isotopic compositions. Journal of Geochemical Exploration , 171: 96–112
- Xu W G , Fan H R , Yang K F , Hu F F , Cai Y C , Wen B J. 2016. Exhaustive gold mineralizing processes of the Sanshandao gold deposit , Jiaodong Peninsula , eastern China: Displayed by hydrothermal alteration modeling. Journal of Asian Earth Sciences , 129: 152–169
- Yang J H , Zhou X H. 2001. Rb–Sr , Sm–Nd , and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology , 29(8): 711–714
- Yang J H , Chung S L , Zhai M G , Zhou X H. 2004. Geochemical and Sr -Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula , China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos , 73(3-4): 145-160
- Yang K F , Fan H R , Santosh M , Hu F F , Wilde S A , Lan T G , Lu L

N, Liu Y S. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology , elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane , the North China Craton. Lithos , 146–147: 112–127

- Zhang L , Yang L Q , Wang Y , Weinberg R F , An P , Chen B Y. 2017. Thermochronologic constrains on the processes of formation and exhumation of the Xinli orogenic gold deposit , Jiaodong Peninsula , eastern China. Ore Geology Reviews , 81: 140–153
- 陈光远,邵伟,孙岱生.1989.胶东金矿成因矿物学与找矿.重庆: 重庆出版社
- 陈海燕,李胜荣,张秀宝,张运强,周起凤,崔举超,刘振豪,宋玉 波. 2012. 胶东金青顶金矿床围岩蚀变特征与金矿化. 矿物岩石 地球化学通报,31(1): 5-13
- 崔书学,王其鸿,于海新.2006.山东省莱州市寺庄矿区深部金矿详 查报告.济南:山东省国土资源厅
- 崔书学,袁文花,杨之利.2008.莱州寺庄金矿床深部地质特征.西 北地质,41(4):82-92
- 芳芳,杨奎锋.2016.胶东-朝鲜半岛中生代金成矿作用.岩石学报, 32(10): 3225-3238.
- 胡芳芳,范宏瑞,杨进辉,王非,翟明国.2006.胶东乳山金矿蚀变 岩中绢云母⁴⁰ Ar/³⁹ Ar 年龄及其对金成矿时间的制约.矿物岩石 地球化学通报,25(2):109-114
- 蒋少涌,戴宝章,姜耀辉,赵海香,侯明兰.2009. 胶东和小秦岭:两
 类不同构造环境中的造山型金矿省.岩石学报,25(11):2727
 -2738

- 李世先,刘长春,安郁宏,王为聪,黄太岭,杨承海.2007.胶东金矿 地质.北京:地质出版社
- 李晓春. 2012. 胶东三山岛金矿围岩蚀变地球化学及成矿意义. 北 京: 中国科学院研究生院
- 李兆龙,杨敏之.1993.胶东金矿床地质地球化学.天津:天津科学 技术出版社
- 林景仟,谭东娟,迟效国,毕立君,谢才富,许保良.1992. 胶辽半岛 中生代花岗岩.北京:科学出版社
- 凌洪飞,胡受奚,孙景贵,倪培,沈昆.2002. 胶东金青顶和大尹格 庄金矿床花岗质围岩的蚀变地球化学研究. 矿床地质,21(2): 187-199
- 罗镇宽,苗来成.2002.胶东招莱地区花岗岩和金矿床.北京:冶金 工业出版社
- 卫清,范宏瑞,蓝廷广,刘玄,姜晓辉,文博杰.2015. 胶东寺庄金矿 床成因:流体包裹体与石英溶解度证据. 岩石学报,31(4): 1049-1062
- 杨之利,张旭,姜洪利.2007.山东省莱州市寺庄金矿床地质特征. 山东国土资源,23(5):6-10
- 张炳林,杨立强,黄锁英,刘跃,刘文龙,赵荣新,徐咏彬,刘胜光.
 2014. 胶东焦家金矿床热液蚀变作用. 岩石学报,30(9): 2533 –2545
- 张志超,李楠,戢兴忠,韩忠,郭耀宇,李在春.2015. 西秦岭阳山金 矿带安坝矿床热液蚀变作用. 岩石学报,31(11): 3405-3419

(本文责任编辑:龚超颖;英文审校:高剑峰)