分类号	密级
U D C	编号

中国科学院地球化学研究所

博士后研究报告

贵州西部峨眉山玄武岩古风化-沉积型稀土多金属矿 成矿机制研究

姓名 张海

工作完成日期: <u>2015 年 3 月</u>—2019 年 3 月

报告提交日期: _____ 2019 年 3 月_____

中国科学院地球化学研究所

2019年3月

贵州西部峨眉山玄武岩古风化-沉积型稀土多金属矿 成矿机制研究

Study on Mineralization Mechanism of the E'meishan Paleo-weathering-sedimentation Type REE-polymetallic Deposit in Western Guizhou

博	\pm	后	姓	名	张海	
流动	力站(一级学	科)	名称	地质学	
专	业(二级学	科)	名称	地球化学	4
合	作	导师	Ĵ		温汉捷	

研究工作起始时间 2015 年 3 月 2 日 研究工作期满时间 2019 年 3 月 2 日

中国科学院地球化学研究所

2019 年 3 月

本人声明所呈交的博士后出站报告是我个人和合作导师指导下 进行的研究工作及取得的研究成果。尽我所知,除文中特别加以标注 和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成 果,也不包含为获得中国科学院地球化研究所或其他教育机构和科研 单位的学位或证书而使用过的材料。与我一同工作的同志对本研究所 做的任何贡献均已在论文中作了明确说明并表示了谢意。

签名: 水 了 日期: 2019 年3月4日

关于博士后出站报告使用授权说明

本人完全了解中国科学院地球化学研究所有关保留、使用博士后 出站报告的规定,即中国科学院地球化学研究所有权保留送交博士后 出站报告的复印件,允许博士后研究报告被查阅和借阅;中国科学院 地球化学研究所可以公布博士后研究报告的全部或部分内容,可以采 用影印、缩印或其他复制手段保存研究报告。

☑公开 □保密(____年)(保密的论文在解密后应遵守此规定)

博士后签名: 3代 合作导师签名: 沁 ~~ 日期: _ 2019 年 3 月 4 日

贵州西部峨眉山玄武岩古风化-沉积型稀土多金属矿

成矿机制研究

摘要

峨眉山玄武岩空间上紧密与稀土多金属矿(化)层直接接触,且富集∑REE(平均 247×10⁻⁶)、Nb(平均 35.1×10⁻⁶)、Ga(平均 25.5×10⁻⁶)、Sc(平均 29.4×10⁻⁶)等主成矿元素;且峨眉山玄武岩组二段至四段第五亚段玄武岩(或凝灰岩)和三件典型矿石锆石 ²⁰⁶Pb/²³⁸U表面年龄分别为:(261.0±3.6)-(259.1±2.2)Ma和(261.1±1.7)-(258.4±1.4)Ma,高度吻合;玄武岩、凝灰岩、风化剖面及沉积剖面中,Isr变化范围较大,I_{Nd}和εNd(t)变化均较小,且I_{Nd}为 0.51214~0.512391,其εNd(t)值为 -3.19~1.71,具有峨眉山玄武岩 I_{Nd}和εNd(t)相似特征。这些表明,稀土多金属矿床成矿物质来源于峨眉山玄武岩。

晚二叠纪贵州西部地区的古地理环境利于峨眉山玄武岩风化淋积型稀土多 金属矿发育。风化剖面垂向上,风化亚黏土层(TREO 平均值 323×10⁻⁶) <玄武 岩弱风化层(TREO 平均值 388×10⁻⁶) <风化残积层(TREO 平均值 809×10⁻⁶), Nb₂O₅、Ga 随风化程度加强而富集,主要在玄武岩风化亚黏土层富集。典型矿石 稀土赋存状态除存在约 31.18%-53.85%的离子吸附型稀土外,还可能存在胶态沉 积相稀土、矿物相稀土或者类质同相稀土等存在形式。

峨眉山玄武岩风化壳发育后,又经历了频繁的海侵海退。海进过程中,海水 将离子型稀土浸取出来,带入海水体系内,部分稀土和铌、铁、钛、锆等元素以 独立矿物或与粘土紧密交织等机械形式迁移进入海水中。海退过程中,以矿物相 形式存在的稀土、铌、铁、钛、锆等矿物,在高能的近岸环境,随着重力分异而 与轻矿物发生分离,形成以铁为主的多金属矿床。在铁矿石中,发现了富铌-稀 土的独居石和磷酸镧颗粒,也证明了这一推断。海水中,以离子态形式迁移的稀 土元素,由贫氧环境向还原环境变化,重稀土元素先以稳定形式沉淀,而发生轻 重稀土分异,形成以稀土为主的稀土多金属矿床。而 AI 元素容易形成稳定络合 物,迁移过程中可携带稀土、铌、镓等元素,较远距离迁移,并在合适的环境聚 集成矿,形成以铝为主的铝多金属矿床。

峨眉山玄武岩经历风化过程,稀土、铌、镓、铁、铝等物质得到富集。随后,

这些风化产物在贵州西部总体海侵海退环境下,不断被海水剥蚀、搬运及改造, 伴随着环境变化和物理化学作用,不同存在形式的稀土、铌、镓、铁、铝等元素 发生了沉积分异,从而形成这一具有特色的峨眉山玄武岩古风化-沉积型稀土多 金属矿床系列。

本研究报告首次建立了峨眉山玄武岩古风化-沉积型稀土多金属成矿-找矿 模型,归纳了三步找矿流程,按此理论,先后在赫章发现峨眉山玄武岩风化淋积 型稀土多金属矿,威宁炉山发现铁(稀土-铌)多金属矿,威宁溪街发现稀土(铌 -钛)多金属矿,威宁大寨铝(镓-稀土-铌)多金属矿,验证了成矿找矿模型的适 用性。

关键词:稀土多金属矿床 古风化-沉积型 物质来源 风化富集 沉积分异成矿机制 贵州西部

Mineralization Mechanism of the E'meishan Paleo-weathering-sedimentation Type

REE-polymetallic Deposit in Western Guizhou

Abstract

The E'meishan Basalt is directly contact with REE-polymetallic ore (mineralized) bed, and enriched in the major ore-forming elements of ΣREE (averaging at 247×10^{-6}), Nb (averaging at 35.1×10^{-6}), Ga (averaging at 25.5×10^{-6}) and Sc (averaging at 29.4×10⁻⁶), etc. Moreover, the zircon ²⁰⁶Pb/²³⁸U apparent ages of basalt (or tuff) of the Second Member to the Fifth Sub-member of the Fourth Member of the E'meishan Basalt Formation and three pieces of typical ore are (261.0±3.6)~(259.1±2.2) Ma and (261.1±1.7)~(258.4±1.4) Ma, respectively, which are highly coincident. In the basalt, tuff, and weathering and sedimentary sections, Isr varies over a large range, but I_{Nd} and $\varepsilon Nd(t)$ vary narrowly; I_{Nd} varies from 0.51214 to 0.512391, ENd(t) varies from -3.19 to 1.71, and the E'meishan Basalt shows similar I_{Nd} and $\epsilon Nd(t)$ characteristics. These characteristics indicate that the REE-polymetallic mineralization elements were sourced from the E'meishan Basalt.

The paleogeographic environment of western Guizhou in the Late Permian time favors the development of the E'meishan basalt weathering-leaching type REE-polymetallic deposit. In the vertical section of weathering, the increasing order by \sum REE is: weathered loam layer (with TREO averaging at 323×10⁻⁶)<weakly weathered basalt layer (TREO averaging at 388×10⁻⁶)<weathered eluvial layer (TREO averaging at 809×10⁻⁶), Nb₂O₅ and Ga concentrated with weathering intensifying, mainly in the weathered clayey layer of basalt. REE occurs in an ion-adsorbed type (31.18~53.85%), possible colloidal sedimentary phase, mineral phase or isomorphic phase, etc. in typical ores.

After the E'meishan Basalt's weathering crust was formed, frequent transgression-regression occurred. During transgression, seawater leached ion-type REEs and brought them into a seawater system; some REEs and Nb, Fe, Ti and Zr, etc. were transformed into seawater in independent minerals, closely crossing with clay, or such other mechanical forms. During regression, REE, Nb, Fe, Ti and Zr minerals etc. in a mineral phase form under high-energy near-shore environment separated with

light minerals, forming Fe-dominated polymetallic deposits with gravitational differentiation. In Fe ore, Nb-REE rich monazite and lanthanum phosphate grains were discovered. In seawater, REE transported in an ion form, the oxygen-deficient environment transitions into a reducing environment; HREEs first precipitated in a stable form and then HREE and LREE differentiation occurred, forming a REE-dominated REE-polymetallic deposit. Al easily formed stable complexes; during transportation, Al could carry REE, Nb, Ge, etc. to a long distance and accumulated in an appropriate environment, forming the Al-dominated Al-polymetallic deposit.

The E'meishan Basalt underwent a weathering process, during when REE, Nb, Ga, Fe and Al elements, etc. accumulated. Subsequently, under the general sea transgression–regression environment of western Guizhou, these weathering products were denuded, transported and reworked continuously by seawater. With environment change and physical and chemical reactions, REE, Nb, Ge, Fe and Al etc. in different forms experienced sedimentary differentiation, thus forming this characteristic E'meishan basalt weathering–sedimentation REE polymetallic deposit series.

This Study first established the E'meishan paleo-weathering-sedimentation type REE-polymetallic mineralization-prospecting model and summarized a prospecting method of three steps. Using this model, the E'meishan basalt weathering-leaching type REE-polymetallic deposit in Hezhang, an iron (REE-Nb) polymetallic deposit in Lushan, Weining, a REE (Nb-Ti) polymetallic deposit in Xijie, Weining, and the Dazhai Al (Ga-REE-Nb) polymetallic deposit in Weining were discovered, verifying the applicability of the mineralization-prospecting model.

Key words: REE-polymetallic deposit; paleo-weathering-sedimentation type; material source; weathering-enrichment; sedimentary differentiation mineralization mechanism; Western Guizhou

第1章	绪论1	
1.1	研究依据及意义1	
	1.1.1 研究依据1	
	1.1.2 研究意义2)
1.2	国内外研究现状	,
1.3	研究目标与研究内容5	,
	1.3.1 研究目标5	,
	1.3.2 研究内容5	,
1.4	研究方法和技术路线)
	1.4.1 研究方法)
	1.4.2 技术路线)
1.5	主要成果和创新点7	,
1.6	完成实物工作量)
第2章	成矿地质背景10)
2.1	区域大地构造背景10)
2.2	区域地层11	
2.3	区域构造12)
2.4	区域岩浆岩13	,
2.5	区域地球物理特征14	ŀ
2.6	区域地球化学特征15	,
2.7	典型矿床24	ŀ
	2.7.1 地层	ŀ
	2.7.2 构造)
	2.7.3 含矿岩系地质地球化学特征)
第3章	物源特征研究	,
3.1	相关地层稀土元素含量特征	,
3.2	峨眉山玄武岩分布及岩石地球化学特征)
	3.2.1 峨眉山玄武岩分布特征)

3.2.2 峨眉山玄武岩岩石地球化学特征	40
3.3 锆石 U-Pb 同位素年代学及其对物源限制研究	48
3.3.1 样品和分析方法	48
3.3.2 锆石 U-Pb 同位素年代学研究	51
3.3.3 锆石微区稀土元素特征研究	68
3.4 Sr、Nd 同位素研究	76
3.4.1 样品和分析方法	76
3.4.2 Sr、Nd 同位素特征	80
第4章 风化富集阶段研究	81
4.1 峨眉山大火成岩省及其风化成矿潜力	81
4.2 峨眉山玄武岩现代风化壳地质特征	
4.3 风化剖面元素地球化学特征	
4.3.1 主量元素地球化学特征	83
4.3.2 稀土元素地球化学特征	87
4.3.3 微量元素地球化学特征	95
4.4 赋存状态研究	99
第5章 沉积分异阶段研究	
5.1 峨眉山玄武岩古风化-沉积型稀土多金属成矿潜力分析	111
5.2 沉积过程中元素分异研究	
5.2.1 晚二叠世沉积相及采样分布情况	
5.2.2 沉积作用过程中成矿元素的分异	115
5.3 赋存状态研究	143
第6章 成矿机制研究	154
6.1 物源特征	154
6.2 风化富集	
6.3 沉积分异	
6.4 成矿机理	161
6.5 找矿模型	164
第7章 结论	

致谢	
参考文献	
报告附件	

第1章 绪论

1.1 研究依据及意义

研究区位于贵州西部毕节-六盘水市地区,与云南昭通鲁甸和曲靖宣威相邻 (图1-1),上二叠统峨眉山玄武岩组、宣威组及龙潭组地层分布广泛。近年来, 贵州地矿局一一三地质队通过地质测量、找矿勘查及科学研究,发现研究区二叠 纪峨眉山玄武岩组古风化剥蚀面之上,宣威组地层底部发育一套富集稀土(Sc 等)、稀有(Nb等)、稀散(Ga)等三稀元素的粘土岩-粉砂岩系,存在稀土多 金属矿(化)点。

图 1-1 研究区工作范围及交通位置图

1.1.1 研究依据

本研究报告依托并紧密结合作者所承担的贵州省科技计划项目"贵州西部峨 眉山玄武岩组三段古风化壳型铌多金属矿成矿机制和成矿潜力研究(黔科合基础 [2017]1092)"、中国地质调查局地质调查评价项目"贵州乌蒙山区优势矿产综合 调查评价"、国家重点研发计划课题(2017YFC0602503)、"贵州赫章野马川地 区玄武岩风化壳型稀土资源调查"及贵州省地质勘查基金项目"贵州威宁-水城地 区铁多金属矿整装勘查"项目进行选题,以"贵州西部峨眉山玄武岩古风化-沉积 型稀土多金属矿床成矿机制研究"为题,展开本报告的研究工作。主要探讨矿床 形成的三个阶段:即物源、风化富集及沉积分异的地质地球化学特征,总结成矿 机制,建立成矿-找矿模型,指导贵州西部,乃至滇黔桂地区峨眉山玄武岩古风 化-沉积型稀土多金属矿床系列找矿工作。

1.1.2 研究意义

已有研究结果表明,贵州西部稀土多金属矿(化)层主要产于二叠系宣威组 底部的一套硬质粘土岩内,空间上与峨眉山玄武岩紧密关联,层位稳定,一般厚 度可达 2-5m,局部与铁矿、铝土矿伴共生,无论是在走向上还是在倾向上都比 较稳定。所采集的矿石样品的分析结果表明,矿石样品除普遍富稀土、铌、镓外, 钪、锆、钛、铁、铝等元素也达到综合利用要求,是一种多种战略性矿产元素同 时超常富集的新类型矿床。

由于该类型矿床与峨眉山玄武岩风化密切相关,空间上位于宣威组地层底 部。峨眉山玄武岩稀土、铌、镓等元素含量背景高,先后经历表生风化的氧化环 境,又经历了后生沉积作用阶段的还原环境。成矿元素经历了风化富集,也在沉 积作用过程中不断分异,因此将该类型矿床暂定为"峨眉山玄武岩古风化-沉积型 稀土多金属矿床"。

通过以往勘查工作,在局部地区已查明稀土矿 REO 约为 100 多万吨,伴生 钪金属量 0.70 万吨,铁矿 (332+333+334)资源量约为 2.34 亿吨。沿海退方向, 存在分异,发育有与铁矿伴共生的稀土-铌多金属矿床、赋存于粘土岩-粉砂岩系 的稀土多金属矿床及与铝土矿伴共生的稀土-镓-铌多金属矿稀土多金属矿床,矿 (化)层所含三稀元素种类多,矿化程度都较高,且较为稳定,潜在资源量巨大。 开展该类型稀土多金属矿床的研究,指导区内找矿,推动贵州毕节-六盘水地区 能源资源基地建设,具有重要的理论指导意义。

1.2 国内外研究现状

我国是稀土储量丰富,矿床类型齐全。因此,在已有的文献中绝大多数是我 国学者的研究成果。就现在国内外已有文献而言,我国稀土矿床类型大致可分为 五种类型:白云鄂博型稀土矿床、与酸性和碱性岩浆和热液活动有关的稀土矿床、 深海软泥型稀土矿床、风化壳型稀土矿床,以及化学沉积型矿床。贵州西北部峨 眉山玄武岩古风化-沉积型稀土多金属矿床与上述所提到的矿床,在成因和类型 方面迥异。

晚二叠世时期峨眉山玄武岩浆强烈喷溢活动具有重要的地球动力学研究意 义^[1-3]。大约~260-255Ma,与地幔柱岩浆活动有关岩浆喷发,形成了初始分布面 积约 3.8×10⁵km^{2[4]}的峨眉山大火成岩省,与其他大火成岩省规模相当^[5-6]。同时, 峨眉山大火成岩省与许多重要金属矿产的形成直接相关^[7],尤以特殊的超大规 模钒钛磁铁矿矿床^[8]而区别于其它成矿的大火成岩省,也发育了不同规模的 Cu-Ni-PGE(铂族元素)矿床^[9]。特别是峨眉山玄武岩本身蕴藏丰富的大离子亲石 元素 (包括稀土、铌、镓等元素),这无疑为次生矿床的形成奠定了良好的物 质基础。

在大火成岩省的形成和演化过程中,大规模区域岩石圈地壳抬升和地表岩石 的风化-剥蚀-去顶作用时有发生^[10-11]。与全球其它典型的大火成岩省比较,现今 峨眉山大火成岩省的保存程度相对而言,最低,表明其曾发生过巨量剥蚀。根据 古地磁记录,二叠纪研究区的古纬度约 2.6°-4.5°S^{12-13]},结合古地磁及古海水温 度、植物化石分异度、植物群综合指标、叶相特征、植物木材化石生长纹等方面 的综合研究^[14-23],认为晚二叠世贵州西部气候炎热,雨量充沛,在表生地质作用 下,暴露在地表的峨眉山玄武岩发生碎裂,并形成大规模的岩屑堆积物和坡积物, 很容易发生物理和化学风化,伴随风化过程和 K、Na 等元素流失,形成富稀土、 铌、镓等元素的风化产物和风化淋积型稀土多金属矿床。事实上,早在 1973 年 贵州地矿局 108 地质队在发现稀土矿时就首先作了报道,黄训华^[24]对威宁鹿房稀 土矿地质特征及成矿作用进行了初步分析。杨瑞东^[25]等,通过中上二叠统界线附 近风化壳类型及成矿作用分析,发现稀土矿的形成与风化壳存在紧密的关系。张 震^[26]等研究了贵州稀土矿及成矿地质特征,认为稀土矿的形成与玄武岩有关。

晚二叠世研究区古地势由北北西向南南东倾斜,海水先由南南东方向侵入,

然后由东向西淹没,形成海水极浅的陆表海。在总的海侵背景下,海水进退频 繁,其中存在着几次明显的海侵。频繁的海水进退,造成了峨眉山玄武岩风化 剥蚀程度的不断加深^[27],伴随物理化学环境变化,形成了与峨眉山玄武岩相关 的稀土、黄铁矿、铝土矿等沉积矿床。如王利东^[28]、王居里^[29]、王砚耕^[30]等, 开展了沉积型铜矿床研究,认为矿床的形成与峨眉山玄武岩风化作用有关。黄 训华^[24]、王伟^[31]、杨瑞东^[25·32]、王强^[33]、Zhou^[34]等研究发现,稀土矿床的形成 与玄武岩的风化作用有关。Deng et al^[35]、Wang et al^[36]、张青伟^[37]等,通过研究 桂北铝土矿床,认为桂北铝土矿床的形成与峨眉山玄武岩风化有关。但均未系 统开小火均为兼顾论述铌、镓等元素的富集机理等。

在 1/20 万威宁幅和水城幅区域地质调查(区域矿产普查)对区内稀土矿床 的研究基础上,贵州大学、贵州地勘局的研究人员对玄武岩风化壳型稀土矿床做 了较为详细的矿床地质、地球化学研究工作,可以归纳为两种类型的风化壳:茅 口组顶部或低洼区域的玄武岩红土风化壳和峨眉山玄武岩或凝灰岩顶部与宣威 组之间的高岭石粘土风化壳。并认为该类型矿床成因为峨眉山玄武岩风化解析出 来的稀土元素,经水介质的搬运,被湖沼环境下沉积未固结成岩的高岭石矿物颗 粒吸附,经成岩作用,形成高岭石硬质粘土岩型稀土矿床^[32]。

随着稀土矿床研究的深入,作者曾于 2014 年以博士论文形式阐述对峨眉山 玄武岩古剥蚀界面之上、宣威组地层底部发育的稀土矿床的认识和观点: (1) 成矿物质的来源除源自峨眉山玄武岩外,火山碎屑凝灰岩也是稀土元素重要来 源; (2)稀土元素主要是以离子态,被高岭石粘土吸附于表面,存在于岩矿之 中,并以离子形式被粘土吸附富集成矿的见解; (3)提出稀土元素主要是以离 子态被高岭石粘土吸附于表面被地表水搬运迁移,并以离子态被高岭石粘土吸附 富集成矿的见解; (4)提出和建立"沉积-再造型稀土矿床"的成矿模式,认为该 区稀土矿床的形成是同生沉积后生富集。即,矿床的形成是在含矿地层形成之后, 在地下水作用下,含矿地层岩石中的稀土元素发生活化、再富集结果^[38]。

总体而言,有不少专家、学者先后亲临该区实地考查,从多学科、多角度展 开科学研究,提出了不少见解,先后发表了不少学术论文,但也仅局限于对单一 地质过程进行研究和评价,均未从物源、风化富集、沉积分异等角度系统开展成 矿机制研究,更缺乏资源利用研究。

1.3 研究目标与研究内容

1.3.1 研究目标

从物源→风化富集→沉积分异的系统过程角度,讨论稀土、铌、镓等元素富 集和分异演化规律、赋存状态等,探索峨眉山玄武岩古风化-沉积型稀土多金属 矿成矿的地质地球化学机制,建立成矿-找矿模型,指导区域找矿工作。

1.3.2 研究内容

(1)区域地质背景。从区域地层、岩浆岩、地质构造、地球物理、地球化 学及典型矿床等方面入手,弄清区域成矿地质条件。

(2)物质来源:从相关地层含矿性入手,梳理区内富稀土、铌、镓等元素 的可能风化母岩;然后系统研究二叠系玄武岩及火山碎屑岩的物质组成,了解峨 眉山玄武岩岩石地球化学特征及其含矿性;再从不同喷发期次的峨眉山玄武岩段 玄武岩、凝灰岩及典型矿石锆石 U-Pb 同位素年龄,了解三者锆石年龄的等同性; 最后,开展峨眉山玄武岩剖面、玄武岩风化剖面及典型矿床剖面 Sr、Nd 同位素 研究,进一步探索物质来源及其在风化、沉积过程中的变化特征。

(3)风化富集阶段研究:探讨风化阶段,主量、微量及稀土元素的迁移规律,近一步揭示稀土、铌、镓等元素风化过程中,搬运迁移及其富集特征及赋存状态。

(4) 沉积分异阶段研究:探讨沉积阶段,主量、微量及稀土元素的迁移规 律,通过古盐度(Sr/Ba)、古气候(CIA)、古氧化还原条件(V/Cr、V/Sc)、 古水动力条件(Zr/Rb)及古水深(Mn/Fe、Zr/Al)示踪主成矿元素在沉积过程 中系列分异规律和地质内涵。近一步开展稀土、铌、镓等元素的赋存状态、搬运 迁移规律,揭示稀土、铌、镓等元素在沉积过程中的地球化学行为。

(5)成矿机制研究:在前述研究基础上,研究稀土、铌、镓等元素从物源→风化富集阶段→沉积分异阶段的成矿机制,并建立成矿-找矿模式。

1.4 研究方法和技术路线

1.4.1 研究方法

区域地质背景。采用地层学、构造地质学、岩石学、地球化学及矿床学
 等基础地质的研究方法,研究本区地层、所处构造单元,并重点研究含矿地层及
 其矿物岩石组成、褶皱构造等,以查明稀土多金属矿床形成的地质背景。

2. 物质来源。采用岩石学和岩石化学、矿物学、元素地球化学、锆石 U-Pb 同位素年代学及 Sr、Nd 同位素方法,分析测试玄武岩、火山碎屑岩及典型矿石 的物质组成和主成矿元素的赋存,探索稀土、铌、镓等元素的物质来源,了解主 成矿元素在风化过程和沉积过程中的富集和分异规律。

3. 确定稀土、铌、镓等元素的存在形式。运用矿物学、元素地球化学、实验地球化学的基础理论和方法,采用显微镜和反光镜、电感耦合等离子质谱 ICP-MS、扫描电镜、透射电镜、电子探针(波谱、能谱)、化学浸取法,通过 物理测试和化学实验方法,确定典型矿石样品中显微组分、矿物、铌、镓及稀土 元素组成、稀土元素的浸出率,利用所获图像和定量数据判断稀土、铌、镓等元 素存在形式,找出影响稀土、铌、镓等元素活化转移的制约因素,查明稀土、铌 及镓等元素活化转移的地质条件。

 4.稀土、铌、镓等元素富集的成矿机制。采用矿床地球化学、矿床学研究 方法,利用上述研究成果,研究稀土、铌、镓等元素富集和分异的机理,建立成 矿-找矿模式。

1.4.2 技术路线

本著作的研究工作路线如下图(图 1-2)。

1.5 主要成果和创新点

本研究报告通过上述研究,取得如下主要成果和创新点:

 Ⅰ.峨眉山玄武岩空间上紧密与稀土多金属矿(化)层直接接触,且富集∑REE、 Nb、Ga、Sc等主成矿元素;且峨眉山玄武岩和典型矿石锆石²⁰⁶Pb/²³⁸U表面年 龄高度吻合;玄武岩、凝灰岩、风化剖面及沉积剖面中,Isr变化范围较大,I_{Nd} 和εNd(t)变化均较小,具有峨眉山玄武岩 I_{Nd}和εNd(t)相似特征。这些表明,稀土 多金属矿床成矿物质来源于峨眉山玄武岩。

2. 较为系统研究了峨眉山玄武岩风化过程中主成矿元素富集规律,认识到

峨眉山玄武岩风化剖面垂向上,稀土元素富集系数依序为风化亚黏土层<玄武岩 弱风化层<风化残积层,Nb2O5、Ga随风化程度加强而富集。而典型矿石稀土赋 存状态除存在约 31.18%-53.85%的离子吸附型稀土外,还可能存在胶态沉积相稀 土、矿物相稀土或者类质同相稀土等存在形式。

3. 较为系统研究了峨眉山玄武岩风化过程中主成矿元素沉积分异规律,提 出:峨眉山玄武岩风化壳发育后,又经历了频繁的海侵海退。海进过程中,海水 将离子型稀土浸取出来,带入海水体系内,部分稀土和铌、铁、钛、锆等元素以 独立矿物或与粘土紧密交织等机械形式迁移进入海水中。海退过程中,以矿物相 形式存在的稀土、铌、铁、钛、锆等矿物,在高能的近岸环境,随着重力分异而 与轻矿物发生分离,形成以铁为主的多金属矿床,在铁矿石中,发现了富铌-稀 土的独居石和磷酸镧颗粒。海水中,以离子态形式迁移的稀土元素,由贫氧环境 向还原环境变化,重稀土元素先以稳定形式沉淀,而发生轻重稀土分异,形成以 稀土为主的稀土多金属矿床。而 AI 元素容易形成稳定络合物,迁移过程中可携 带稀土、铌、镓等元素,较远距离迁移,并在合适的环境聚集成矿,形成以铝为 主的铝多金属矿床。

4. 指出峨眉山玄武岩经历风化过程,稀土、铌、镓、铁、铝等物质得到富集。随后,这些风化产物在贵州西部总体海侵海退环境下,不断被海水剥蚀、搬运及改造,伴随着环境变化和物理化学作用,不同存在形式的稀土、铌、镓、铁、铝等元素发生了沉积分异,从而形成这一具有特色的峨眉山玄武岩古风化-沉积型稀土多金属矿床系列。

5. 首次建立了峨眉山玄武岩古风化-沉积型稀土多金属成矿-找矿模型,归 纳了三步找矿方法,按此理论,先后在赫章发现峨眉山玄武岩风化淋积型稀土多 金属矿,威宁炉山发现铁(稀土-铌)多金属矿,威宁溪街发现稀土(铌-钛)多 金属矿,威宁大寨铝(镓-稀土-铌)多金属矿,验证了成矿找矿模型的适用性。

1.6 完成实物工作量

截止目前为止,本研究报告共完成的主要实物工作量见表 1-1:

项目名称	单 位	数 量	完成人
1:10000 地质填图	Km ²	1200	本人及项目组
典型矿床调查	个	7	本人
岩矿样品采集	件	194	本人及项目组
探槽及钻孔编录	米	24000	本人及项目组
岩矿鉴定	件	8	本人
电子探针(波谱、能谱)	件	8	本人
电镜扫描、透射电镜分析	件	8	本人
稀土元素测试	件	194	本人
常量元素测试	件	194	本人
微量元素测试	件	194	本人
典型矿石浸取及可选性实验	件	2	本人及相关单位

表 1-1 主要完成实物工作量

第2章 成矿地质背景

2.1 区域大地构造背景

研究区的大地构造位置位于扬子准地台西南缘,"特提斯-喜马拉雅"与滨太平洋两大全 球巨型构造域交汇处(图 2-1)。发生于二叠纪末的巨量岩浆活动是华南陆块演化历史上的 一次重大地质事件,导致了扬子克拉通西部峨眉山大火成岩省的形成,自西向东、由南向 北,峨眉山玄武岩呈逐渐变薄的趋势,玄武岩最厚为1249米。

105[°]E

图 2-1 峨眉山大火成岩省地质略图[4]

2.2 区域地层

研究区除志留系地层外,震旦系-白垩系地层均有出露,累计最大厚度达23000m。震旦 系-三叠系主要为海相沉积组合,白垩系为山间盆地沉积,第四系为内陆山地多成因松散堆 积。地层接触关系除上白垩统、第四系与下伏地层为角度不整合外,其余地层均为整合或 平行不整合。此外,研究区还广泛出露峨眉山玄武岩。特别地,在峨眉山玄武岩组顶部古 剥蚀面之上,宣威组地层底部发育一套富稀土、铌、镓、钪、铁、钛、铝的多金属矿(化) 层。

层位	群国	成组	段	代	号	主要岩性特征				
白垩系	茅	台组		K ₂	₂ m	深灰色砾岩及紫红色粉砂岩、含砾粉砂岩。				
	关岭组		二		二 段	T ₂	g^2	深灰色中厚层蠕虫状泥晶灰岩、泥质岩及钙质粘土岩。		
					2g ¹	以玻屑凝灰岩(绿豆岩)为标志。为黄绿色中厚层豆粒状水云母粘 土岩、角砾状灰岩、砂屑灰岩、粗晶灰岩。				
			五 段	T ₁ .	-2 j ⁵	灰、灰白色块状塌砾岩-弱去膏化薄, 主。	层泥晶白云岩, 向上以砾岩为			
_				T1.	-2 j ⁴	灰色中厚层细晶白云岩-薄层泥质白云岩、方解石化粉晶白云岩				
二叠五	嘉陵江组		嘉陵江组		{陵江组 三 深灰色中厚层灰岩或蠕虫状灰岩 段 T ₁₋₂ j ³ 层。		深灰色中厚层灰岩或蠕虫状灰岩与〕 层。	黄灰色中厚层泥晶白云岩互		
杀			二 段	T ₁ .	-2 j ²	黄绿色、黄灰色薄至中厚层粉砂质* 蠕虫状灰岩互层。	粘土岩与中厚层泥晶白云岩、			
			一 段	T ₁ .	-2 j ¹	上部为灰、深灰色中厚层至厚层泥 ₁ 层泥晶灰岩与蠕虫状灰岩互层。	晶灰岩;中部灰色中厚层至厚			
	夜郎组	大治组	三 段	T_1y^3		灰绿、紫红色微至薄层粘土岩、中 厚层泥晶灰岩、泥灰岩。	为一套龙 深龙鱼蒲至中巨			
			二 段	T_1y^2	T 1	深灰色中厚层细晶灰岩夹厚层细 晶灰岩。	泥至细晶灰岩、泥灰岩。下 部夹页岩。			
		~11	一 段	T_1y^1	I 1d	灰色薄至中厚层粉砂岩、粘土质粉砂 岩-灰色中厚层泥灰岩。				
	大陸	备组		P	3d	灰黑色薄至中厚层硅质岩、粘土质制	粉砂岩或凝灰质粘土岩。			
	长头	兴组		P	3C	灰、深灰色中到厚层含燧石团块(条	带)细晶灰岩。			
	龙潭组/ 宣威组		三 段	Pa	3 1 ³	灰、暗灰色粘土质粉砂岩、粉砂岩。 层),以 7 号煤层与下伏地层为分别	夹灰岩及细砂岩碳质泥岩(煤 昙标志。	相応 広		
二叠系			二段	Р	1 ²	灰、深灰色薄至中厚层粉砂岩、粘 质泥岩、煤层。以 17 号煤层与下6	土岩夹细砂岩、钙质砂岩及碳 伏地层为分层标志。	铁矿、铜、		
			一 段	P 3	3 1 1	灰、暗灰色薄层粉砂岩夹碳质泥岩、 为一套铁铝质含矿岩系(Fe-Al)(非正 粉砂岩,富集铌、镓、钪、铁、钛、	、灰岩透镜体、粘土岩。底部 式填图单元), 岩性为粘土岩、 、稀土多金属元素。	55、怖工 多金属		
	峨眉山玄 岩组			P ₂₋₃	em	深灰、灰绿色致密块状玄武岩-杏仁 律。	状玄武岩构成 3-5 个喷发韵	铜、金		
	茅口组		三 段	P ₂ 1	m ³	浅灰、灰白色厚层含生物屑泥晶灰	岩及含砂屑灰岩。			
			二段	P ₂ 1	m ²	上部为深灰色薄层生物屑泥晶灰岩- 层、浅灰色泥晶生物灰岩;下部深 质粘土岩互层。	与黑色薄层含锰炭质粘土岩互 灰色中至厚层生物灰岩与炭	金、汞		

表 2-1 贵州西部区域地层系统简表

层位	群或组	段	代号	主要岩 性特征	主要 矿产
	茅口组	一段	P ₂ m ¹	深灰色中厚层含重晶石团块粗晶白云岩、砂屑灰岩、含白 云质斑块生物灰岩。	
		二段	P_2q^2	深灰色厚层泥至粉晶生物灰岩、燧石灰岩。	
	栖霞组	一段	P_2q^1	灰、深灰色薄至中厚层生物屑灰岩夹黑色薄层炭质粘土岩。	金矿
	梁山组		P ₂ 1	浅灰、灰白色中厚层至厚层细粒石英砂岩夹粘土岩。	劣质煤
	马平组		C ₂ m	灰、灰白色厚层藻屑灰岩、生物灰岩、含藻泥至粉晶灰岩。	
	黄龙组		C ₂ h	灰、灰白色厚层砂屑灰岩、生物屑灰岩,上部为厚层至块状灰岩。	
石 炭	大埔组		$C_1 d$	上部为厚层块状灰质白云岩;下部为泥质白云岩与灰绿色 粘土岩互层。	
系	九架炉组		Cıjj	灰白色薄层含黄铁矿粉砂质粘土岩、水云母粘土岩、铝土 岩。	铝、铁
泥盆	五指山组		D ₃ wz	灰、灰白色厚层中至细晶灰岩夹白云岩,底部为泥质灰岩、 泥灰岩。	
奥陶 系	湄潭组		O ₁ m	浅海相砂页岩夹灰岩透镜体。	
	娄山关群		∈Ols	灰、清高灰色白云岩及白云质灰岩。	铅锌
	陡坡寺组		$\in_2 dp$	灰、暗灰色薄层钙质页岩,间夹薄至中厚层细粒石英砂岩。	
	清虚洞组		$\in {}_1q$	中上部为厚层泥晶白云岩;下部为绿灰色中厚层瘤状泥质 灰岩-灰、浅灰色薄至中厚层泥质粉砂岩、钙质页岩互层。	铅锌
	金顶山组		∈ıj	灰绿色薄层粉砂岩、泥质粉砂岩与灰绿色薄层砂质页岩、 页岩。	
寒		三段	$\in_1 m^3$	浅灰、灰绿色薄至厚层粉砂岩、泥质粉砂岩、粉砂质粘土 岩、页岩。	
武系	田心圭伯	二段	$\in {}_1m^2$	深灰色薄至中厚层砂屑白云质灰岩与浅灰色白云岩互层。	
	切心寸組	一段	$\in {}_1m^1$	灰、黄绿色薄层粘土质石英粉砂岩、粘土岩。	
	牛蹄塘组		$\in_1 n$	灰黑色薄层炭质粘土岩。	镍钼
	戈仲伍组		∈₁gz	灰、灰黑色薄至中厚层白云质生物碎屑、砂屑磷块岩,白 云质、硅质磷块岩	稀土 磷矿
震旦系	灯影组	二段	Z ₂ dy	灰、浅灰色厚层至块状砂屑白云岩、含藻白云岩、粉晶白 云岩, 间夹中厚层纹层状白云岩。	铜铅 锌金

2.3 区域构造

研究区北东向-北西向断裂和褶皱发育为特点(图 2-2)。其中,峨眉山玄武 岩顶部存在玄武岩风化壳,稀土富集程度高,稀土氧化物总量(TREO,下同) 一般 0.08%-0.50%,最高达 1.60%,已达到工业品位要求。

2.4 区域岩浆岩

二叠纪, 使统一的扬子陆块发生分裂, 西部地区继续拗陷且更加强列。除沉 积物增多加厚外, 还有广泛的基性火山喷发。东部扬子陆块裂陷虽有一定影响, 但裂而无谷, 只表现为二叠纪玄武岩在大陆上大量地喷溢和火山碎屑岩, 形成峨 眉山玄武岩省。

研究区峨眉山玄武岩及次火山岩相辉绿岩是川滇黔地区广泛分布的峨眉山 玄武岩的一部分,区内峨眉山玄武岩出露范围较大,连片分布。峨眉山玄武岩覆 盖面广、厚度大,且富集稀土、铌、钛、镓等元素。晚二叠世古气候炎热潮湿, 峨眉山玄武岩遭受到强烈风化作用,从发育铁、铝、稀土风化壳。已有研究表明, 峨眉山大火成岩省形成时所处的地理位置为~5.4^[12],即位于赤道附近,因此有利 于区域内出露地表的玄武岩等岩浆岩及火山碎屑岩发生红土化化学风化,形成玄 武岩风化淋积型稀土多金属矿,后期经历海侵,而被剥蚀-搬运-沉积分异等地质 作用,形成独具特色的峨眉山玄武岩古风化-沉积型稀土多金属矿床系列。

2.5 区域地球物理特征

研究区位于我国第二重力梯度带南段,属幔隆与幔拗过渡区,布格重力等值 线与莫霍面等深线高度密集,且吻合较好,区内布格重力异常梯度较陡,处在全 国青藏高原环型重力梯级带东南段。

从全国 1:100 万航磁ΔT 异常图(图 2-3)可知研究区内航磁异常主要为由二叠 纪玄武岩产生的火山跳跃场和由沉积盖层产生的低缓负磁场为主,与研究区内出 露地层及火山岩分布区相对应。在化极后的ΔT 航磁异常上异常轴向大多呈东西 向。可知,研究区内航空磁力异常主要为由二叠纪玄武岩产生的火山跳跃场和由 沉积盖层产生的低缓负磁场为主,与研究区内出露地层及火山岩分布区相对应。 区内航磁异常主要为由玄武岩产生的跳跃磁异常,区内磁异常变化较大,总体来 说,航磁变化较杂乱。

图 2-3 贵州西部航磁△T 异常图

2.6 区域地球化学特征

据 1: 20 万水系沉积物地球化学、泛滥平原沉积测量资料、谢学锦^[39]编制的 《中国西南七十六个元素图集》、冯济舟^[40]编制的《贵州省地球化学图集》及何 绍麟^[41]《贵州地壳表层构造地球化学分区及其意义》等研究表明,研究区内地表 富集稀土元素和部分亲硫元素。如 La、Nb、P、Sn、Ti、Y、Zr 及 Fe₂O₃、Al₂O₃、 等元素或氧化物地球化学背景明显高于其它地球化学区和贵州省地球化学背景。 火 成 岩 类 元 素 组 合 主 要 为 Ti-V-Fe₂O₃-Nb-Cu-Cr-Ni-Co , 其 次 为 P-Mn-La-Y-Zr-Au-Al₂O₃等,其相关系数较高,关系十分密切,在贵州占有非常 突出的地位。Ag、Pb、Zn、Cd、As、Cu、Pt、Pd 等元素的丰度较高,异常规模 大,浓集中心较明显,且分带清晰,空间套合较好,呈成群成带分布的特点。具 体特征如下: (1) 西南地区共发育 10 处稀土元素地球化学异常,研究区即处于六盘水-弥 勒地区稀土元素地球化学异常区。该异常位于黔西-滇东地区,面积约 25000km²。 其中轻稀土元素异常(图 2-4)与重稀土元素大体相似(图 2-5),不同在于重稀土元 素异常与个旧到马关异常区连接在一起。通过与地质背景结合分析可以可知,异 常跨上扬子陆块和右江褶皱系;北东向的弥勒-师宗断裂将六盘水-弥勒异常和马 关异常区分裂开,而异常的浓集中心位于弥勒附近。但在研究区,轻稀土元素富 集程度强。

图 2-4 西南地区 LREE 元素异常图^[39]

(2) Nb(图 2-6)、Ti(图 2-7)、Ga(图 2-8)、Pt(图 2-9)、Fe(图 2-10)、REE(稀 土元素)异常在空间上与峨眉山玄武岩分布关系密切,呈面状分布,富集程度高。 本次研究发现,在云南鲁甸、贵州威宁、云南鲁甸、广西平果等地发现宣威组(或 龙潭组)底部铝土矿中富铌镓稀土多金属元素。

(3) Al 异常特征(图 2-11)主要分布与晚二叠世海侵海退分布区域一致,在

威宁西部地区存在一个异常,与本项目发现的铝土矿点分布区域较为吻合。整体 而言,Al元素异常表现为峨眉山玄武岩风化-富集和受海水迁移作用影响,有可 能是云南-广西二叠系沉积型铝土矿的重要物质来源。

2.7 典型矿床

2012-2015年,作者主持中国地调局贵州乌蒙山地区优势矿产地质调查评价(铁稀土) 项目,在香炉山地区估算 334 稀土金属量 14.07 万吨(达大型矿床规模),估算 332+333+334 铁矿石资源量 2251 万吨(达中型规模),本文以该地区稀土多金属矿为例, 简要介绍该类型矿床地质特征。

香炉山地区普遍发育峨眉山玄武岩古风化-沉积型稀土多金属矿(化)层,该区地质 构造相对简单、沉积建造多样、大陆溢流拉斑玄武岩浆活动强烈而短暂,具地幔热柱活动 的特点;主要发育二叠系-三叠系地层,以陆相碎屑沉积为主(图 2-12)。矿床空间上分布 于一系列短轴向斜中,赋存于二叠纪峨眉山玄武岩组剥蚀面之上,宣威组一段底部地层内。

图 2-12 威宁县香炉山峨眉山玄武岩稀土多金属矿区地质简图

2.7.1 地层

香炉山矿区内出露主要地层从下向上依次为峨眉玄武岩组、含矿岩系、宣威组。现将 区内地层从老至新简述如下:

1、峨嵋山玄武岩组(P2-3em)

厚 600-1200m,与下伏茅口组地层呈平行不整合接触,根据岩石组合特征可分为三段。

第一段(P2.3em¹): 灰黄、黄绿色中厚~薄层状凝灰岩、粘土化凝灰岩及凝灰质粘土岩,夹

深褐色、灰黑色炭质、有机质粘土岩及锰质粘土岩;底部时见砾岩、含砾粘土岩透镜体,砾石 为深灰色生物屑泥晶灰岩,填隙物为泥质、钙质及少量红色铁质物,在区域上本段直接覆在茅 口组灰岩顶部古岩溶侵蚀面上,为平行不整合接触,呈似层状、透镜状分布,厚0-40m。本段在 矿区内未出露。

第二段(P₂₋₃em²):为峨嵋山玄武岩主体,为玄武质熔岩,岩性主要由块状拉斑玄武岩和 杏仁状玄武岩交替组成。上部主要由熔结角砾岩、熔结凝灰岩、拉斑玄武岩、粗玄岩、杏仁状玄武 岩及凝灰岩组成,厚 400m-1000m。

第三段(P₂₋₃em³):上部为暗绿色、暗红色玄武岩、凝灰质玄武岩,厚约 11m。中部为 灰绿色、暗红色火山角砾岩,厚约 25m。下部为灰绿色、暗绿色玄武熔岩、杏仁状玄武 岩,柱状节理较为发育。

2、宣威组(P₃x)

主要为湖滨沼泽相沉积,区内出露厚 0.00-190m,下部以棕红色、深灰色、灰绿色、褐黄 色泥质粉砂岩、粉砂质泥岩和鲕粒铁质粉砂岩为主,中上部由砾岩、岩屑砂岩、粉砂岩、粘 土岩、炭质页岩、煤层构成多旋回韵律层所组成,产植物化石。其中,含矿岩系(Fe-Al 岩系) 主要位与宣威组地层底部。

								分枝	所结果		
层位代号		柱状图		样	岩 性 描 述			(%)		(1	0~6)
	8	1: 200		師号	1.1 1.2 1.4 2.2	0.29	Cu	TFe	TiO ₂	RE(ce)	TRE ₂ O3
		· · · ·		H01	深灰色、暗绿色细砂岩,含少量黑色、灰绿色泥质条带和炭质薄膜,局	0.29		8.28	1.63	217	283
			11	HO	部可见黄铁矿颗粒;中部夹0.20m灰黑色粉砂岩及灰白色泥质条带。	0.13		11.78	3.22	520	624
P ₂ x		· · · · ·	///	нı	暗红色粉砂质泥岩,夹暗绿色网脉状泥质条带,含少量凝灰质。	1.33	0.22		3.77	219	595
- 3			$\parallel \mid$	H2	深灰色泥岩,局部见植物化石碎片。	0.32	0.02		4.08	257	769
			1//	H3	深红色粉砂岩,局部见黄铁矿颗粒呈星散状分布。	0.43	0.013		3.42	258	690
			$\parallel \Lambda$	H4	深灰至暗绿色薄层状粘土岩。	0.28	0.015		3.6	126	382
	N		/	H5	深灰色薄层状粘土岩,含少量凝灰质。	0.10	0.018		3.3	331	998
			V	H6	深灰色薄层状粘土岩,中部见0.50cm煤线和黄铁矿颗粒。	0.75	0.014		3.67	202	579
	1		/	H7-1	灰绿色硬质粘上岩,含少量绿泥石和凝灰质。	0.89	0.022	13.2	4.28	442	1184
				H7-2	灰绿色硬质粘土岩,含少量绿泥石和凝灰质。	0.89	0.03	10.84	5.59	442	1184
Fe-Al				H8	深灰色薄层状粘土岩,沿层面见黄铁矿薄膜、网脉状自然铜。	0.45	1.17	14.12	6.21	209	597
		Te Be	/	Н9	暗红色火山角砾赤铁矿(磁铁矿),见暗绿色网状砂质条带,零星见黄 铁矿及自然铜。	0.44	1.07	41.75	13.18	172	394
		Fe Fe		H10	暗红色凝灰质赤铁矿,局部见绿泥石,零星见黄铁矿呈星点状分布。	1.04	0.108	32.58	9.77	252	697
	\vee			H11	暗红色铁质凝灰岩,含凝灰质及灰白色斑点。	1.30	0.006	16.08	3.85	267	1007
				H12	暗红色凝灰质赤铁矿,含少量泥质。	1.21	0.004	21.57	5.55	300	1208
$\mathbf{P}_3 \boldsymbol{\beta}^{-3}$				H13	暗红色凝灰岩, 夹灰黄色泥条带, 含大量灰白色斑点, 见铁质浸染。	1.35		18.43	5.24	359	493

图2-13 ZK801 含矿岩系地质柱状图

3、含矿岩系(Fe-Al 岩系)

含矿岩系(Fe-Al 岩系)广泛产于峨眉山玄武岩组顶部古风化剥蚀面之上,宣威组地层底部(图 2-13),在香炉山地区内含矿岩系岩性组合特征及厚度变化较小,与上覆宣威组地

层以煤线、泥质粉砂岩、细砂岩为分界标志,与下伏峨眉山玄武岩组地层以紫红色凝灰岩(局部为玄武岩)为分界线。据地表地质填图及深部钻孔揭露,含矿岩系在垂向上总厚度一般 3-15m,最厚近 50m,通过总结区域资料和各探矿工程含矿岩系对比发现,铁稀土评价区 南南西到北北东方向,由陆相向海相渐变,含矿岩系逐渐变薄。

1、下部为多为褐红、暗红色铁质(含铁质)粘土岩、鲕豆状铁质粘土岩、铁质凝灰质粘 土岩、含铁质角砾粘土岩组成,其厚度 0.5-15m 不等,该层主要富集矿产以铁为主,局部富 集有铜、钛、稀土等矿产。

2、上部为灰白-深灰色粘土岩,局部夹薄层泥质粉砂岩、粉砂质泥岩,一般厚度 0.5-2m,最厚达 10m,常伴有植物化石。该层主要富集矿产以稀土、铌、钪为主,局部 富集铁、铜矿。

2.7.2 构造

矿区主要发育北西向和炉山短轴向斜(图 2-12)。

(1)褶皱

香炉山向斜,在研究区沿北西西向出露长约 15km,两翼宽约 5km,向斜北东翼地层 产状变化不大,地层倾向 170-240°,倾角 5-14°,一般 8°,南西翼地层受断层破坏,产状 变化较大,地层产状总体倾向 340-10°,倾角 7-40°。

(2) 断层

矿区发育北西、北东和近南北向三组断层,以北西向断层最为发育,断层与铁多金属 矿的成因无关,局部断层对矿层起破坏作用。其中,矿区依次发育:二塘沟-白泥田北西向 (F1)断层、周家坡-施家营东西向(F2)断层、小海都块北东向(F3)断层、蔡家院子-学田上北 西向(F4)断层、孔家坪子-七龙海子近南北向(F5)断层、浸水-管家沟北西向(F6)断层、小河 边北西向(F7)断层、陈家院子-刘家院子北西向(F8)断层。

2.7.3 含矿岩系地质地球化学特征

1、空间分布规律

含矿岩系(Fe-Al)是一套含铁铝质的粘土岩、粉砂岩类为主,相伴有稀土矿、铌矿、铁 矿、钛矿等矿产的含矿岩系组合,主要产于峨眉山玄武岩顶部古剥蚀面之上,宣威组地层 底部。该岩系主要分布在炉山短轴向斜构造内,严格受地层、岩相古地理环境控制: (1) 晚二叠世古地势较高的火山高地之间的低洼区,含矿岩系发育稳定,厚度大、主成矿元素

矿化程度高; (2)稀土矿化发育范围广,晚二叠世古地理环境从陆相到海相均有发育,但 离物源越远,且处于海相区域,稀土矿化程度越弱; (3)铁矿分布离物源较近,分布范围 较小; (4)铝土矿化在海相和陆相均有发育,但陆相环境中常伴生铌、钛、稀土元素,海 相则主要伴生镓等元素; (5)区域上,从陆相区域→海相区域、古地势高→低及玄武岩及 凝灰岩厚→薄,含矿岩系厚度亦由厚→薄,矿化程度由强→弱(图 2-14)。

单个矿体在垂向上,下部多富集铁、铜、钛、铌、钪等矿产,以铁为主;上部主要 富集稀土、铌、钪、钛,局部富集铁、铜矿,以稀土为主。矿体形态一般呈层状、似层状,其 中,铁矿与稀土矿呈异位共生,一般铁矿层位于稀土矿层之下。

图2-14 贵州威宁-水城地区铁、稀土矿层厚度、品位变化柱状对比图

2、含矿岩系地质特征

含矿岩系(Fe-Al)为于一套铁铝质岩系,主要为褐红-褐黑色铁质粘土岩(图 2-15, A、B、C)、浅灰-灰白色铝土质粘土岩、粉砂岩(图 2-15, D、E)、灰白色铝土矿(图 2-15, F、G、H)。含矿岩系可分为两个矿层: (1)下部矿层主要分布在矿区的北部和西部,主要富含铁、铜和钛,岩性主要为棕红色-深红铁粘土岩、豆鲕状铁质粘土岩、含凝灰岩铁质粘土岩和铁质粘土岩; 厚约 0.50m~3.50m,平均 1.0 m; TFe₂O₃含量一般为 20.50%-41.75%,一般 20%~30%。(2)上矿层主要富集稀土、铌、钛等元素;岩性主要由灰色和深灰色粘土岩、泥质粉砂岩、粉质泥岩组成,常伴有植物化石,其厚度为 0.50m~5.03m,厚度约为 2.0m,稀土氧化物总量(TREO,下同)一般为 218×10⁻⁶-4029×10⁻⁶,平均为 817×10⁻⁶。

图 2-15 贵州西部稀土多金属矿床剖面(A, D、F)及不同 矿石类型(C、E、H)野外照片

3、含矿岩系地球化学特征

根据 ZK801 孔取样 83 件,进行铜、铁、二氧化钛、稀土、稀有元素测试,了解各种组分在含矿岩系中的赋存情况,除铁、铜、钛外,稀土、铌、镓等稀贵元素富集程度高,局部铌、稀土元素含量已经达到工业品位,值得关注。参见表 2-2、表 2-3, 初步认识如下:

一元素样品号	La	Ce	Pr	Nd	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu	Y
H1	68.7	171	17.5	68	13	4.54	12.2	1.79	9.34	1.64	4.5	0.6	4.1	0.6	36
H2	108	318	28.7	112	19.1	5.55	17.2	2.51	13.6	2.47	7	0.9	5.8	0.8	57
H3	80.9	175	21.3	84	15.3	4.27	14.2	2.08	10.8	1.94	5.4	0.7	4.4	0.7	46
H4	99	304	26.5	102	17.1	5.06	15.8	2.35	12.7	2.26	6.2	0.9	5.3	0.8	52
H5	157	372	29.1	112	23.7	7.46	24	3.47	17.8	3.03	8.2	1.1	7.2	1	68
H6	70	145	18.6	76	13.8	3.91	12.8	1.97	11.1	2.09	5.8	0.8	4.5	0.7	48
H7-1	350	547	46.4	158	21.6	6.12	20.7	2.63	14.3	2.75	8.3	1.2	7.7	1.2	57
H7-2	158	408	37.8	146	24.6	7.26	22.3	3.24	18.3	3.5	10.3	1.5	9.1	1.4	72
HS	80.1	165	19.4	80	15.7	5.46	15.4	2.45	13.6	2.48	6.6	0.9	5.4	0.8	55
H9	40.4	132	10.7	41	7.79	3.56	8.6	1.15	5.69	0.97	2.5	0.3	2	0.3	24
H10	14.9	80	3.2	11	1.78	0.57	2,1	0.26	1.34	0.24	0.7	0.1	0.8	0.1	5
H11	204	325	39.8	143	22.2	8.21	20.5	2.56	11.4	1.6	3.4	0.3	1.6	0.2	25
H12	369	382	59.8	236	41.4	13.6	34.2	4.57	21.3	2.79	5.4	0.5	2.5	0.3	38
P3 B 2-1	33.17	72.0	9.67	41.57	8.0	3.02	7,29	1.1	5.82	1.05	2.9	0.39	2.44	0,4	23.36
P ₃ β ²⁻²	36.37	78.4	10.44	45.60	9.0	3.51	8.27	1.2	6.38	1.12	3.0	0.39	2.37	0.3	25.66
Pa \$ 2+2	41.32	94.2	12.46	54,43	10.8	4.66	9,99	1.5	7.71	1.34	3,5	0.46	2.76	0.4	28.70
P3 B 2-1	39.79	88.7	11.69	50.30	10.1	4.14	10.40	1.7	9.68	1.82	5.0	0.65	3.81	0.6	46,72

表2-2 ZK801含矿岩系垂向剖面元素分析表(单位: 10-6)

表2-3 ZK801含矿岩系垂向剖面元素分析表

元素	ΣREE	LREE	HREE	LREE/HREE	Sc	Та	Nb	V2 O 5	Ga	Cu	TFe	TiO ₂
样品与				单位:	10-6					<u>Å</u>	龟位:	%
H1	376.65	341.89	34.76	9.83	28	7	93	1341	35	0.020		3.77
H2	641.98	591.72	50.26	11.77	24	12	104	1170	35	0.020		4.08
H3	421.3	381	40.31	9.45	24	3	73	1289	29	0.013		3.42
H4	600.08	553.85	46.23	11.98	23	13	114	1197	37	0.015		3.60
H5	767.3	701.37	65.94	10.64	28	<1.0	74	2343	38	0.018		3.30
H6	366.22	326.5	39.72	8. 22	25	6	73	1241	30	0.014		3,67
H7-1	1188.02	1129.27	58.76	19.22	34	5	82	1476	38	0.000	10.00	4.00
H7-2	852.06	782.39	69.67	11.23	40	15	112	1885	61	10. 026	12.02	4.93
H8	413.3	365.65	47.65	7.67	41	28	108	1967	114	1.17	14.12	6.21
H9	257	235.51	21.49	10.96	84	<1.0	130	4384	88	1.07	41.75	13.18
H10	117.28	111.56	5.72	19.51	56	<1.0	76	2888	50	0.108	32.58	9.77
H11	783.63	742.18	41.46	17.9	37	2	52	1168	35	0.006	16.08	3.85
H12	1172.66	1101.17	71.49	15.4	52	<1.0	45	1577	39	0.004	21.57	5.55
P3 β ³⁻²	245.56	217.91	27.65	7.88	35	2	40	1251	33			
Ρ3 β 3-1	238.26	204.70	33.57	6.10	31	2	34	1870	27			
P3 β ²⁻²	206. 41	183.35	23.06	7.95	26	2	33	1040	22			
P3 B 2-1	188.75	167, 43	21.32	7.85	23	2	29	1290	19			

注:稀土及稀有元素分析仪器为 ICP-AES, Cu、TFe、TiO2 为化学分析。其中 P₂₋₃em²⁻¹ 各项元素含 量为 24 件玄武质火山角砾岩的平均值; P₂₋₃em²⁻² 各项元素含量为 9 件玄武质凝灰岩的平均值; P₂₋₃em³⁻¹ 各项 元素含量为 2 件玄武岩的平均值; P₂₋₃em³⁻² 各项元素含量为 35 件凝灰岩的平均值。 (1)稀土矿主要富集在硬质粘土岩中,矿层厚 3.45m。其含量随着碳质成分增加而相 对增加,随着砂质含量增加而变小,稀土元素在斑点状粘土化凝灰岩(疑为流纹质凝灰岩) 中也较富集。稀土总量(∑REE)变化范围为 366.22-1188.02×10⁻⁶,平均∑REE 为 743.29×10⁻⁶。 与稀土共伴生的元素有钛、铜、钪。

(2)铁、钛、铜主要富集在含铁稀土岩系下部铁质粘土岩中,TFe 品位 32.58-41.75%, 平均品位为 33.55%,矿层厚约 1.42m; TiO₂ 品位 9.77-13.18%,平均品位为 10.87%,矿 层厚 1.42m; Cu 品位 1.07-1.17%,平均品位为 1.10%,矿层厚 0.99m。表 4-1、4-7 表明, 铁矿层与钛矿赋存位置相当,铜矿赋位置在铁矿层之上,稀土元素则赋存于整个含矿岩系, 钪在铝质粘土岩和铁质粘土岩中含量均相对较高,一般含量范围: 34-84×10⁻⁶,平均为 48×10⁻⁶。

(3)稀土元素、铌、钪、镓在峨眉山玄武岩演化过程中,趋向于在后期富集,特别是 轻稀土元素。从 P_{2.3}em²⁻¹ 玄武质角砾岩→P_{2.3}em²⁻² 玄武质凝灰岩→P_{2.3}em³⁻¹ 玄武岩→P_{2.3}em³⁻² 凝 灰岩,稀土总量变化依次为 188.75→206.41→238.26→245.56×10⁻⁶,轻稀土总量变化依次为 167.43→183.35→204.70→217.91×10⁻⁶,按此趋势,峨眉山玄武岩组晚期岩浆演化过程中, 稀土等元素有可能进一步富集成矿,为后期风化成矿提供了物质来源。

(4)稀土元素组成特征

①稀土元素组成

选取地表和深部典型工程探槽 JTC09 和钻孔 ZK1601 岩(矿)样品进行稀土元素氧化 物含量分析,并分别计算稀土氧化物总量(TRE0,下同)、轻稀土氧化物总量(TLRE0,下同)、重稀土氧化物总量(THRE0,下同)、La₂O₃+CeO₂+Nd₂O₃+Y₂O₃+Sc₂O₃、La₂O₃+CeO₂+Nd₂O₃、Y₂O₃+Sc₂O₃的参数值(见表 2-4)和各元素氧化物及参数占稀土元素氧 化物总量的百分比(表 2-5),具体特征如下:

①-1. 通过对比,稀土矿石主要为粘土岩、粉砂质泥岩、粉砂岩,主要有价稀土元素 氧化物有 5 个,分别是 La₂O₃、CeO₂、Nd₂O₃、Y₂O₃、Sc₂O₃,五元素氧化物含量之和在矿 石中占 TRE0 的平均百分比一般在 83-88%,其中 Y₂O₃+Sc₂O₃ 在矿石中占 TRE0 的平均百 分比一般在 14-31%。

此外,TRE0大于 500×10⁻⁶ 的矿石中,La₂O₃+CeO₂+Nd₂O₃+Y₂O₃+Sc₂O₃ 含量范围为 530-3137×10⁻⁶,平均为 1041×10⁻⁶,占TRE0 的平均百分比范围为 70.9-97.8%,平均为 85%; CeO₂ 含量范围为 75-1176×10⁻⁶,平均为 373×10⁻⁶,占TRE0 的平均百分比范围为 14.3-87.9%,平均为 36%;La₂O₃ 含量范围为 15-885×10⁻⁶,平均为 231×10⁻⁶,占TRE0 的

平均百分比范围为 2.6-28.2%, 平均为 20%; La₂O₃ 含量范围为 15-885×10⁻⁶, 平均为 231×10⁻⁶, 占 TRE0 的平均百分比范围为 2.6-28.2%, 平均为 20%; Nd₂O₃ 含量范围为 9.4-453×10⁻⁶, 平均为 158×10⁻⁶, 占 TRE0 的平均百分比范围为 1.7-22.1%, 平均为 15%; Sc₂O₃ 含量范围为 25.8-186×10⁻⁶, 平均为 63×10⁻⁶, 占 TRE0 的平均百分比范围为 2.2-16.7%, 平均为 6.9%, 值得关注的是含铝粘土岩类中 Sc₂O₃ 平均含量为 128.3×10⁻⁶; Y₂O₃ 含量范围为 4.7-147×10⁻⁶, 平均为 66×10⁻⁶, 占 TRE0 的平均百分比范围为 0.8-20.7%, 平均为 7.1%;

①-2. TRE0 在各岩类中的分布特征表现为:粘土岩类(平均含量:1138×10⁻⁶)>含铝粘 土岩类(平均含量:1128×10⁻⁶)>粉砂质泥岩类(平均含量:909×10⁻⁶)>凝灰质粘土岩类(平 均含量:764×10⁻⁶)>粉砂岩类(平均含量:654×10⁻⁶)>铁质粘土岩类(平均含量:279×10⁻⁶) >凝灰岩类(平均含量:278×10⁻⁶),总体来看,稀土总量含量受岩性控制,与粘土岩类关系 密切,即矿石粘土矿物含量越高,含量越高,含砂质成分越高,含量降低。

①-3. 轻稀土元素氧化物总量(TLRE0,下同)在各岩类中的分布特征表现为: 粘土岩类(平均含量: 940×10⁻⁶)>含铝粘土岩类(平均含量: 898×10⁻⁶)>粉砂质泥岩类(平均含量: 727×10⁻⁶)>凝灰质粘土岩类(平均含量: 649×10⁻⁶)>粉砂岩类(平均含量: 512×10⁻⁶)>凝灰岩类(平均含量: 181×10⁻⁶)>铁质粘土岩类(平均含量: 179×10⁻⁶),总体来看 TLRE0 与 TRE0 特征相 似。

各岩类 TLRE0 占 TRE0 的平均百分比分布特征表现为:凝灰质粘土岩类(85%)>粘土 岩类(83%)>含铝粘土岩类(80%)>粉砂质泥岩类(80%)>粉砂岩类(78%)>凝灰岩类(65%) >铁质粘土岩类(63%)。

①-4. 重稀土元素氧化物总量(THRE0,下同)在各岩类中的分布特征表现为: 含铝粘土 岩类(平均含量: 230×10⁻⁶)>粘土岩类(平均含量: 197×10⁻⁶)>粉砂质泥岩类(平均含量: 182×10⁻⁶)>粉砂岩类(平均含量: 142×10⁻⁶)>凝灰质粘土岩类(平均含量: 115×10⁻⁶)>铁质粘 土岩类(平均含量: 101×10⁻⁶)>凝灰岩类(平均含量: 97×10⁻⁶)。

各岩类 THRE0 占 TRE0 的平均百分比分布特征表现为:铁质粘土岩类(36%)>凝灰岩 类(35%)>粉砂岩类(22%)>含铝粘土岩类(20%)=粉砂质泥岩类(20%)>粘土岩类(20%)>凝 灰质粘土岩类(35%),总体来看 THRE0 与 TRE0 特征相似。

①-5、La₂O₃+CeO₂+Nd₂O₃+Y₂O₃+Sc₂O₃在各岩类中的分布特征表现为:含铝粘土岩类 (平均含量:974×10⁻⁶)>粘土岩类(平均含量:968×10⁻⁶)>粉砂质泥岩类(平均含量:760 ×10⁻⁶))>凝灰质粘土岩类(平均含量:667×10⁻⁶)>粉砂岩类(平均含量:547×10⁻⁶)>凝灰岩

类(平均含量: 243×10⁻⁶)>铁质粘土岩类(平均含量: 241×10⁻⁶)。

各岩类 La₂O₃+CeO₂+Nd₂O₃+Y₂O₃+Sc₂O₃ 占稀土元素氧化物总量(RExOy)的平均百分 比分布特征表现为:凝灰质粘土岩类(88%)>凝灰岩类(87%)>铁质粘土岩类(87%)>含铝粘 土岩类(86%)>粉砂岩类(84%)=粉砂质泥岩类(84%)>粘土岩类(83%)。

①-6、La₂O₃+CeO₂+Nd₂O₃ 在各岩类中的分布特征表现为:粘土岩类(平均含量:826×10⁻⁶)>含铝粘土岩类(平均含量:785×10⁻⁶)>粉砂质泥岩类(平均含量:628×10⁻⁶)>凝灰质粘 土岩类(平均含量:576×10⁻⁶)>粉砂岩类(平均含量:444×10⁻⁶)>凝灰岩类(平均含量:159×10⁻⁶)> 头质粘土岩类(平均含量:154×10⁻⁶)。

各岩类 La₂O₃+CeO₂+Nd₂O₃ 占稀土元素氧化物总量(RExOy)的平均百分比分布特征表现为:凝灰质粘土岩类(74%)>含铝粘土岩类(70%)>粉砂质泥岩类(68%)>粉砂岩类(67%)>粘土岩类(65%)>凝灰岩类(57%)>铁质粘土岩类(55%)。

①-7、Y₂O₃+Sc₂O₃ 在各岩类中的分布特征表现为:含铝粘土岩类(平均含量:189×10⁻⁶) >粘土岩类(平均含量:142×10⁻⁶)>粉砂质泥岩类(平均含量:132×10⁻⁶)>粉砂岩类(平均含 量:103×10⁻⁶)>凝灰质粘土岩类(平均含量:91×10⁻⁶)>铁质粘土岩类(平均含量:86×10⁻⁶) >凝灰岩类(平均含量:84×10⁻⁶)。

各岩类 Y₂O₃+Sc₂O₃ 占 TRE0 的平均百分比分布特征表现为:铁质粘土岩类(31%)>凝 灰岩类(30%)>粘土岩类(18%)>含铝粘土岩类(17%)>粉砂岩类(16%)>粉砂质泥岩类(15%) >凝灰质粘土岩类(14%)。

第2章 成矿地质背景

		表2-4		典	电型工利	呈JTC09)、ZK	1601	岩(矿)	样品和	希土テ	記素氧	化物	含量	分析测	则试数	据及	参数约	充计表	€(单位	Ž: 10)-6)		
送样编号	样品名称	Y ₂ C	3 La	a_2O_3	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O	Eu ₂ O ₃	Gd ₂ O	Tb ₄ O ₇	Dy ₂ O	Ho ₂ O 3	Er ₂ O ₃	$Tm_2 \\ O_3$	Yb ₂ O 3	Lu ₂ O	Sc_2O_3	TRE0	TLRE 0	TLRE 0	$La_2O_3+CeO_2+N$ d $_2O_3+Y_2O_3+Sc_2O_3$	$\begin{array}{c} La_2O_3+CeO_2\\ +Nd_2O_3\end{array}$	Y_2O_3+S c $_2O_3$
JTC09H1	凝灰质粘土岩	38.:	5 12	29.2	290.3	46.6	186.4	30.4	7.9	22.8	3.2	14.3	2.3	4.4	0.7	3.3	0.4	61.6	843	714	129	706	606	100
JTC09H2	凝灰岩	20.	3	38.9	59.0	9.2	35.1	7.6	2.1	6.3	1.2	6.9	1.2	2.4	0.4	2.6	0.4	64.8	258	158	100	218	133	85
JTC09H3	凝灰质粘土岩	24.) 5	51.2	85.0	10.7	41.5	7.7	2.0	6.5	1.1	6.5	1.2	2.4	0.4	2.5	0.3	102.2	346	204	141	305	178	127
JTC09H4	铁质粘土岩	25.:	5 3	35.5	48.6	8.0	32.4	6.6	1.9	5.9	1.0	6.3	1.1	2.3	0.4	2.5	0.3	98.6	277	139	138	240	116	124
JTC09H5	铁质粘土岩	38.	5 7	70.1	105.7	14.1	55.0	11.6	3.0	10.6	1.8	9.9	1.8	3.4	0.5	3.4	0.5	48.4	378	270	108	318	231	87
JTC09H6	粘土岩	68.	4	45.0	84.8	11.6	50.7	13.5	4.2	15.3	3.2	20.9	3.7	6.8	1.0	6.0	0.8	72.5	408	225	183	321	180	141
JTC09H7	粘土岩	109.	4 3	39.4	75.6	14.2	70.2	25.7	8.7	28.9	6.2	40.1	6.8	11.2	1.6	9.3	1.3	81.1	530	263	267	376	185	191
JTC09H8	粘土岩	18.	3 9	97.6	150.8	19.1	72.8	11.3	2.7	9.9	1.6	8.1	1.5	2.9	0.4	2.5	0.4	52.2	452	364	88	392	321	70
JTC09H9	粘土岩	47.	38	88.3	457.2	65.0	239.9	42.0	8.5	28.8	3.8	18.0	2.9	5.5	0.6	3.5	0.4	120.0	1431	1230	202	1253	1085	167
JTC09H10	含铝粘土岩	41.	3 31	17.6	365.9	54.5	194.4	34.6	7.0	26.7	2.9	14.0	2.3	4.5	0.5	3.1	0.4	70.3	1140	1001	139	990	878	112
JTC09H11	含铝粘土岩	79.4	1 23	32.3	309.2	43.3	150.8	26.7	6.5	25.8	4.3	24.5	4.0	8.2	1.4	10.7	1.5	186.3	1115	795	320	958	692	266
JTC09H12	粘土岩	147.	0 88	85.1	1176.3	132.6	453.1	78.1	16.0	73.0	10.3	49.6	8.2	16.8	2.5	17.0	2.4	68.6	3137	2814	322	2730	2515	216
JTC09H13	粉砂质泥岩	56.	5 12	26.8	218.0	31.3	122.5	26.2	4.7	21.3	3.3	17.0	2.8	5.8	0.9	5.7	0.8	69.2	713	551	162	593	467	126
XBT1H1	凝灰质粘土岩	57.:	5 35	57.1	478.5	73.1	228.3	36.2	8.8	31.1	4.2	19.8	3.0	6.4	0.9	5.6	0.8	78.8	1390	1213	177	1200	1064	136
ZK1601H1	粉砂岩	63.:	5 14	42.9	244.1	28.6	105.7	19.1	4.1	17.5	2.7	15.1	2.8	6.1	1.0	7.0	1.1	33.4	695	562	133	590	493	97
ZK1601H2	粉砂质泥岩	104.	4 21	11.0	412.6	42.6	164.8	33.0	7.5	31.2	5.1	28.4	4.8	10.1	1.6	11.2	1.7	34.7	1105	903	202	927	788	139
ZK1601H3	粉砂岩	69.) 15	59.6	271.9	33.9	124.4	23.0	5.4	20.6	3.4	19.1	3.4	7.3	1.2	8.2	1.3	36.2	788	639	149	661	556	105
ZK1601H4	粘土岩	44.0) 19	97.5	363.3	43.9	164.5	28.5	6.1	22.8	3.4	16.8	2.8	6.3	1.0	7.3	1.1	41.6	951	827	124	811	725	86
ZK1601H5	粉砂质	62.:	5 10	06.3	188.1	23.0	89.3	16.9	3.8	15.5	2.6	15.3	2.8	6.2	1.0	7.1	1.1	31.9	573	443	131	478	384	94
ZK1601H6	粘土岩	44.2	2 8	80.3	141.6	16.5	60.7	12.7	3.3	11.3	1.9	12.4	2.4	5.6	1.0	7.3	1.1	33.5	436	326	110	360	283	78
ZK1601H7	泥质粉砂岩	64.	5 9	98.7	165.8	20.1	79.4	18.0	4.3	16.7	3.1	18.6	3.3	6.8	1.1	7.6	1.1	51.5	561	403	158	460	344	116
ZK1601H8	粘土岩	131.	3 39	91.2	676.4	68.1	243.0	43.1	9.9	40.0	6.6	39.2	7.2	16.0	2.7	18.0	2.7	59.1	1754	1472	283	1501	1311	190
ZK1601H9	铁质粘土岩	15.	3 1	10.7	91.2	3.2	14.0	3.4	1.0	3.6	0.5	3.2	0.6	1.3	0.2	1.6	0.2	32.3	183	127	56	164	116	48
ZK1601H10	凝灰质粘土岩	4.7	1	14.9	496.8	3.2	9.4	1.4	0.5	4.2	0.3	1.1	0.2	0.5	0.1	0.8	0.1	26.7	565	530	35	553	521	31
ZK1601H111/2	凝灰质粘土岩	28.4	19	96.3	298.6	35.4	117.5	19.6	5.2	18.6	2.8	14.2	2.1	3.8	0.4	2.6	0.3	25.8	772	691	80	667	612	54
ZK1601H112/2	凝灰质粘土岩	38.	3 15	57.3	218.9	27.4	97.1	18.0	5.1	17.8	2.9	16.1	2.4	4.5	0.6	3.7	0.5	59.4	670	542	129	571	473	98
ZK1601H12	凝灰岩	15.:	5 5	51.9	102.9	8.5	29.9	5.1	1.3	4.8	0.7	4.4	0.8	1.9	0.3	2.5	0.4	67.6	299	204	94	268	185	83

中国科学院地球化学研究所博士后研究工作报告

		~~~~			12010	0) ( <u>D</u>	11100	ты(т	711 "	- 100-		14101	/• H =	E/4 //	1713 10 1		~ > ~	(-)0+1	1	1	10)		
送样编号	样品名称	Y ₂ O ₃	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O	Eu ₂ O ₃	Gd ₂ O	Tb ₄ O ₇	Dy ₂ O	Ho ₂ O	Er ₂ O ₃	$Tm_2 \\ O_3$	Yb ₂ O	Lu ₂ O	$Sc_2O_3$	TRE0	TLRE 0	TLRE 0	$La_2O_3+CeO_2+Nd_2O_3+Y_2O_3+Sc_2O_3$	$\begin{array}{c} La_2O_3+C\ eO_2\\ +Nd_2O_3\end{array}$	$Y_{2}O_{3}+Sc_{2}O_{3}$
	凝灰岩类(2 件)	17.8	45.4	80.9	8.9	32.5	6.4	1.7	5.6	0.9	5.7	1.0	2.1	0.4	2.5	0.4	66.2	278	181	97	243	159	84
各岩	凝灰质粘土岩类(6件)	32.1	151.0	311.3	32.7	113.4	18.9	4.9	16.8	2.4	12.0	1.9	3.7	0.5	3.1	0.4	59.1	764	649	115	667	576	91
类稀	铁质粘土岩类量(3件)	26.6	38.7	81.8	8.4	33.8	7.2	2.0	6.7	1.1	6.5	1.2	2.3	0.4	2.5	0.4	59.8	279	179	101	241	154	86
土元素及	粘土岩类(8 件)	76.2	265.5	390.8	46.4	169.4	31.9	7.4	28.8	4.6	25.6	4.4	8.9	1.4	8.9	1.3	66.1	1137	940	197	968	826	142
参数	含铝粘土岩类(2 件)	60.3	274.9	337.5	48.9	172.6	30.7	6.7	26.3	3.6	19.2	3.2	6.3	1.0	6.9	1.0	128.3	1127	898	230	974	785	189
含量	粉砂质泥岩类(2 件)	80.5	168.9	315.3	37.0	143.7	29.6	6.1	26.2	4.2	22.7	3.8	8.0	1.2	8.5	1.2	51.9	909	727	182	760	628	132
	粉砂岩类(4 件)	64.9	126.9	217.5	26.4	99.7	19.2	4.4	17.6	2.9	17.0	3.0	6.6	1.1	7.5	1.1	38.3	654	512	142	547	444	103

续表2-4 典型工程JTC09、ZK1601岩(矿)样品稀土元素氧化物含量分析测试数据及参数统计表(单位: 10⁶)

### 表 2-5 典型工程JTC09、ZK1601岩(矿)样品稀土元素氧化物含量及参数占稀土氧化物总量百分比统计表(单位:%)

送样编号	样品名称	$Y_2O_3$	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O	Eu ₂ O ₃	Gd ₂ O	Tb ₄ O ₇	Dy ₂ O	Ho ₂ O 3	Er ₂ O ₃	Tm ₂ O	Yb ₂ O	Lu ₂ O ₃	Sc ₂ O ₃	RExO y	RE(Ce)	RE(Y)	$La_2O_3+CeO_2+N$ $d$ $_2O_3+Y_2O_3+Sc_2O_3$	$\begin{array}{c} La_2O_3+C\ eO_2\\ +Nd_2O_3\end{array}$	$\begin{array}{c} Y_2O_3+S\\ c\\ _2O_3 \end{array}$
JTC09H1	凝灰质粘土岩	4.57	15.33	34.46	5.53	22.13	3.61	0.94	2.71	0.38	1.70	0.28	0.53	0.08	0.39	0.05	7.31	100	85	15	84	72	12
JTC09H2	凝灰岩	7.79	15.06	22.86	3.56	13.62	2.94	0.81	2.44	0.45	2.66	0.45	0.91	0.15	1.00	0.14	25.13	100	61	39	84	52	33
JTC09H3	凝灰质粘土岩	7.20	14.79	24.58	3.09	12.00	2.22	0.57	1.89	0.31	1.88	0.34	0.68	0.10	0.71	0.10	29.55	100	59	41	88	51	37
JTC09H4	铁质粘土岩	9.21	12.82	17.56	2.91	11.69	2.37	0.67	2.13	0.37	2.26	0.41	0.83	0.14	0.89	0.12	35.62	100	50	50	87	42	45
JTC09H5	铁质粘土岩	10.21	18.52	27.93	3.72	14.54	3.07	0.79	2.80	0.46	2.61	0.46	0.90	0.14	0.89	0.13	12.80	100	71	29	84	61	23
JTC09H6	粘土岩	16.67	11.01	20.79	2.85	12.42	3.31	1.04	3.76	0.78	5.12	0.91	1.67	0.24	1.47	0.20	17.76	100	55	45	79	44	34
JTC09H7	粘土岩	20.66	7.44	14.27	2.67	13.25	4.85	1.65	5.45	1.17	7.58	1.28	2.11	0.30	1.75	0.24	15.31	100	50	50	71	35	36
JTC09H8	粘土岩	4.05	21.58	33.34	4.23	16.10	2.51	0.60	2.20	0.36	1.80	0.34	0.64	0.08	0.55	0.08	11.53	100	81	19	87	71	16
JTC09H9	粘土岩	3.29	27.13	31.94	4.54	16.76	2.93	0.59	2.01	0.26	1.26	0.20	0.38	0.04	0.25	0.03	8.38	100	86	14	87	76	12
JTC09H10	含铝粘土岩	3.63	27.86	32.09	4.78	17.05	3.04	0.61	2.34	0.25	1.23	0.20	0.40	0.04	0.27	0.04	6.16	100	88	12	87	77	10
JTC09H11	含铝粘土岩	7.12	20.83	27.73	3.89	13.53	2.40	0.58	2.32	0.38	2.20	0.36	0.73	0.13	0.96	0.14	16.71	100	71	29	86	62	24
JTC09H12	粘土岩	4.69	28.22	37.50	4.23	14.44	2.49	0.51	2.33	0.33	1.58	0.26	0.53	0.08	0.54	0.08	2.19	100	90	10	87	80	7
JTC09H13	粉砂质泥岩	7.94	17.78	30.58	4.40	17.19	3.67	0.66	2.99	0.47	2.39	0.39	0.82	0.12	0.81	0.12	9.71	100	77	23	83	66	18
XBT1H1	凝灰质粘土岩	4.14	25.69	34.42	5.26	16.42	2.60	0.63	2.24	0.30	1.43	0.22	0.46	0.06	0.40	0.06	5.67	100	87	13	86	77	10
ZK1601H1	粉砂岩	9.14	20.57	35.15	4.12	15.22	2.74	0.60	2.52	0.39	2.17	0.40	0.88	0.15	1.00	0.15	4.81	100	81	19	85	71	14
ZK1601H2	粉砂质泥岩	9.45	19.10	37.35	3.85	14.92	2.99	0.68	2.82	0.46	2.57	0.44	0.92	0.15	1.01	0.15	3.14	100	82	18	84	71	13

第2章 成矿地质背景

ZK1601H3	粉砂岩	8.76	20.26	34.53	4.30	15.79	2.92	0.68	2.61	0.43	2.42	0.43	0.92	0.15	1.04	0.16	4.60	100	81	19	84	71	13
ZK1601H4	粘土岩	4.63	20.77	38.20	4.62	17.30	2.99	0.64	2.40	0.36	1.77	0.30	0.66	0.11	0.77	0.12	4.37	100	87	13	85	76	9

_ 实权 2-3 兴生工性ITCOA ZATOOIA(1) /什吅你工儿杀氧化物百里及多效口你工氧化物心里口刀比兆件仪(干位: /	续表 2-5	;典型工程JTC09、	ZK1601岩(矿	)样品稀土元素氧化物含量及参数占稀土氧化物总量百分比统计表(单位:	%)
-------------------------------------------------------------------	--------	-------------	-----------	-----------------------------------	----

送样	羊编号	样品名称	$Y_2O_3$	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Sc ₂ O ₃	RExO y	RE(Ce)	RE(Y)	$\begin{array}{c} La_{2}O_{3}+CeO_{2}+\\ Nd\\ _{2}O_{3}+Y_{2}O_{3}+Sc_{2}\\ O_{3} \end{array}$	$\begin{array}{c} La_2O_3+\\ C\\ eO_2+N\\ d_2\\ O_3 \end{array}$	$Y_2O_3+S$ c $_2O_3$
ZK	1601H5	粉砂质	10.90	18.54	32.80	4.00	15.57	2.95	0.66	2.71	0.45	2.67	0.49	1.09	0.18	1.24	0.19	5.57	100	77	23	83	67	16
ZK	1601H6	粘土岩	10.15	18.42	32.49	3.79	13.93	2.90	0.75	2.59	0.44	2.84	0.55	1.28	0.24	1.69	0.26	7.68	100	75	25	83	65	18
ZK	1601H7	泥质粉砂岩	11.52	17.60	29.57	3.59	14.16	3.20	0.76	2.98	0.55	3.32	0.58	1.21	0.20	1.36	0.20	9.19	100	72	28	82	61	21
ZK	1601H8	粘土岩	7.48	22.30	38.55	3.88	13.85	2.45	0.57	2.28	0.38	2.24	0.41	0.91	0.15	1.03	0.15	3.37	100	84	16	86	75	11
ZK	1601H9	铁质粘土岩	8.62	5.83	49.88	1.73	7.64	1.86	0.56	1.98	0.30	1.77	0.34	0.73	0.12	0.85	0.13	17.67	100	69	31	90	63	26
ZK1 0	601H1	凝灰质粘土岩	0.83	2.64	87.93	0.57	1.66	0.25	0.09	0.74	0.05	0.20	0.04	0.10	0.02	0.13	0.02	4.73	100	94	6	98	92	6
ZK16 1/2	01H11	凝灰质粘土岩	3.68	25.44	38.69	4.59	15.23	2.54	0.67	2.41	0.36	1.84	0.27	0.49	0.06	0.34	0.05	3.34	100	90	10	86	79	7
ZK16 2/2	01H11	凝灰质粘土岩	5.78	23.47	32.64	4.08	14.49	2.69	0.76	2.66	0.43	2.40	0.36	0.67	0.09	0.56	0.07	8.85	100	81	19	85	71	15
ZK1 2	601H1	凝灰岩	5.19	17.38	34.43	2.85	10.00	1.71	0.43	1.62	0.25	1.49	0.28	0.65	0.11	0.82	0.13	22.64	100	68	32	90	62	28
各岩	凝友	灰岩类(2 件)	6.5	16.2	28.6	3.2	11.8	2.3	0.6	2.0	0.3	2.1	0.4	0.8	0.1	0.9	0.1	23.9	100	65	35	87	57	30
奕 梢	凝灰质	粘土岩类6件)	4.4	17.9	42.1	3.9	13.7	2.3	0.6	2.1	0.3	1.6	0.2	0.5	0.1	0.4	0.1	9.9	100	85	15	88	74	14
素及	铁质粘	计岩类量(3件)	9.3	12.4	31.8	2.8	11.3	2.4	0.7	2.3	0.4	2.2	0.4	0.8	0.1	0.9	0.1	22.0	100	64	36	87	55	31
参数占私	1 粘土	上岩类(8 件)	9.0	19.6	30.9	3.9	14.8	3.1	0.8	2.9	0.5	3.0	0.5	1.0	0.2	1.0	0.1	8.8	100	83	17	83	65	18
土总	含铝料	站土岩类(2 件)	5.4	24.3	29.9	4.3	15.3	2.7	0.6	2.3	0.3	1.7	0.3	0.6	0.1	0.6	0.1	11.4	100	80	20	86	70	17
量 平均 日	粉砂质	质泥岩类(2 件)	8.7	18.4	34.0	4.1	16.1	3.3	0.7	2.9	0.5	2.5	0.4	0.9	0.1	0.9	0.1	6.4	100	80	20	84	68	15
值	粉矿	少岩类(4 件)	10.1	19.2	33.0	4.0	15.2	3.0	0.7	2.7	0.5	2.6	0.5	1.0	0.2	1.2	0.2	6.0	100	78	22	84	67	16

## 第3章 物源特征研究

发生于二叠纪末的巨量岩浆活动是华南陆块演化历史上的一次重大地质 事件,导致了扬子克拉通西部峨眉山大火成岩省的形成。峨眉山大火成岩省的 主要岩性为玄武岩和层状-似层状火山碎屑岩(如: 凝灰岩),且构成峨眉山大 火成岩省主体的玄武岩及火山碎屑岩富含铁族、高场强元素和稀土元素,其中, 铌(Nb)一般含量范围为 32.30×10⁻⁶~40.1×10⁻⁶;稀土总量(ΣREE)范围为 206.4×10⁻⁶~318.9×10^{-6[38,42]}。

本节从区域地层、峨眉山玄武岩、玄武岩风化剖面及典型矿石的主量、微量、稀土元素含量特征、锆石 U-Pb 年代学及 Sr、Nd 同位素等特征,进一步研究物源特征。

## 3.1 相关地层稀土元素含量特征

研究区主要出露泥盆系-侏罗系地层。从地质时代角度,可能提供物源的地 层主要是泥盆系-二叠系地层。为了研究哪些地层为稀土多金属矿床提供成矿物 质来源,本节通过系统采集泥盆系独山组、望城坡组、石炭系汤耙沟组、祥摆组、 上司组、大埔组、黄龙组、马坪组、二叠系包磨山组、梁山组、栖霞组、茅口组 及峨眉山玄武岩组地层典型岩石样品,在贵州省地质矿产中心实验室,采用 Perkin-Elmer Sciex ELAN DRC-e 型电感耦合等离子体质谱仪(ICP-MS)进行分 析,数据见表 3-1。

1、∑REE 主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩、泥盆系独山组宋 家桥段底部石英砂岩和粘土岩及二叠系梁山组石英砂岩中含量高,其他地层岩石 中,∑REE 含量一般低于 10.0×10⁻⁶。其中,二叠系峨眉山玄武岩组玄武岩中一般 167×10⁻⁶~256×10⁻⁶,平均 219×10⁻⁶,凝灰岩中一般 156×10⁻⁶~667×10⁻⁶,平均 330×10⁻⁶;泥盆系独山组石英砂岩达 231×10⁻⁶,粘土岩达 175×10⁻⁶;二叠系梁山 组石英砂岩一般 52.3×10⁻⁶~60.2×10⁻⁶,平均 56.3×10⁻⁶。

2、Sc 主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩中含量高,其他地层岩石中, Sc 含量一般低于 1.00×10⁻⁶。其中,二叠系峨眉山玄武岩组玄武岩中一般

22.8×10⁻⁶~36.8×10⁻⁶,平均 27.7×10⁻⁶,凝灰岩中一般 26.6×10⁻⁶~45.4×10⁻⁶,平均 37.2×10⁻⁶。

3、Ga 主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩、泥盆系独山组宋家桥 段粘土岩中含量高,其他地层岩石中,Ga 含量一般低于 0.50×10⁻⁶。其中,二叠 系峨眉山玄武岩组玄武岩中一般 16.8×10⁻⁶~24.1×10⁻⁶,平均 20.3×10⁻⁶,凝灰岩中 一般 21.9×10⁻⁶~42.9×10⁻⁶,平均 30.4×10⁻⁶;泥盆系独山组粘土岩达 18.3×10⁻⁶。

4、Nb主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩、泥盆系独山组宋家桥段粘土岩和石英砂岩中含量高,其他地层岩石中,Nb含量一般低于1.00×10⁻⁶。 其中,二叠系峨眉山玄武岩组玄武岩中一般26.8×10⁻⁶~43.8×10⁻⁶,平均36.5×10⁻⁶,凝灰岩中一般31.3×10⁻⁶~64.4×10⁻⁶,平均43.2×10⁻⁶;泥盆系独山组粘土岩达19.2×10⁻⁶,石英砂岩达10.7×10⁻⁶。

5、Cu主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩中含量高,其他地层岩石中,Cu含量一般低于10.0×10⁻⁶。其中,二叠系峨眉山玄武岩组玄武岩中一般106×10⁻⁶~216×10⁻⁶,平均162×10⁻⁶,凝灰岩中一般29.9×10⁻⁶~164×10⁻⁶,平均75.5×10⁻⁶。

6、V主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩、泥盆系独山组宋家桥 段粘土岩中含量高,其他地层岩石中,V含量一般低于10.0×10⁻⁶。。其中,二叠 系峨眉山玄武岩组玄武岩中一般281×10⁻⁶~392×10⁻⁶,平均339×10⁻⁶,凝灰岩中 一般319×10⁻⁶~451×10⁻⁶,平均382×10⁻⁶;泥盆系独山组粘土岩达242×10⁻⁶。

7、Zr主要在二叠系峨眉山玄武岩组玄武岩和凝灰岩、泥盆系独山组宋家桥 段粘土岩和石英砂岩中含量高,其他地层岩石中,Zr含量一般低于10.0×10⁻⁶。 其中,二叠系峨眉山玄武岩组玄武岩中一般184×10⁻⁶~333×10⁻⁶,平均362×10⁻⁶, 凝灰岩中一般210×10⁻⁶~454×10⁻⁶,平均309×10⁻⁶;泥盆系独山组粘土岩达 1090×10⁻⁶,石英砂岩达1000×10⁻⁶。

综合上述,从各地层∑REE、Sc、Ga、Nb、Cu、Zr含量特征表明,二叠系 峨眉山玄武岩组、梁山组和泥盆系独山组地层岩石均有可能提供物质来源,从空 间分布和主成矿元素含量特征而言,玄武岩和凝灰岩提供物质来源的几率最大。

	年代地层	岩石地层	ΣREE	Sc	Ga	Nb	V	Cu	Zr
		底部灰岩	8.18	/	0.49	0.51	7.4	5.05	5.99
		鸡泡段中部灰岩	13.3	0.29	0.6	0.67	2.46	2.43	5.23
		鸡泡段顶部灰岩	6.08	/	0.15	0.12	0.5	2.49	1.43
泥分系	独山组(D ₂ d)	鸡窝寨段底部灰岩	22.7	/	0.13	0.15	0.86	3.12	0.89
(D)		宋家桥段底部石英砂岩	231	2.48	2.89	10.7	24.1	16.13	1000
		宋家桥段顶部粘土岩	175	10.5	18.3	19.2	242	21.02	1090
		宋家桥段顶部石英砂岩	4.57	/	0.6	0.28	2.97	7.04	3.54
	望成坡组 (D ₂ w)	底部灰岩	11.1	0.7	0.25	0.18	4.65	2.41	1.37
	2.M.M.A. (D3.17)	顶部灰岩	13.8	0.89	0.34	0.23	4.98	3.37	1.71
	汤耙沟组 (C.t)	底部泥晶灰岩	20.2	0.78	0.42	0.34	6.62	4.88	1.88
	Million (elt)	顶部灰岩	46.1	1.69	1.62	1.19	16.1	5.58	8.79
	祥摆组(C ₁ x)	石英砂岩	71.7	1.61	2.32	3.39	10.1	8.87	312
		中部泥晶灰岩	1.01	1.02	0.03	0.1	1.67	3.57	0.57
	上司组 (C.s)	上部微晶白云质灰岩	3.48	0.98	0.07	0.14	4.59	4.03	0.89
	TT THE COLOR	上部泥晶灰岩	3.57	0.58	0.08	0.11	9.03	4.08	1.11
		下部泥晶灰岩	1.16	0.53	0.04	0.08	8.49	2.74	0.7
石炭系		中下部细晶白云岩	0.47	1.04	0.01	0.14	3.11	3.46	0.54
(C)	大埔组 (Crod)	上部中晶白云岩	1.11	0.94	0.07	0.14	2.38	6.13	0.65
	5 C 11711 ( C 1-2 0 )	顶部细到中晶白云岩	1.04	0.38	0.04	0.11	0.23	2.78	0.77
		底部细晶白云岩	1.57	0.4	0.05	0.1	3.12	3.3	0.81
		底部泥晶灰岩	1.88	0.92	0.19	0.26	2.2	5.4	1.06
	黄龙组(C ₂ h)	上部生物屑泥晶灰岩	1.11	0.69	0.03	0.09	1.25	3.06	0.94
		底部细到泥晶灰岩	0.74	0.68	0.04	0.08	1.35	3.2	0.73
	马坪组 (C ₂ m)	顶部生物屑泥晶灰岩	1.56	0.88	0.06	0.15	1.83	4.65	1.17
	• • • • • • • • • • • • • • • • • • • •	底部生物屑泥晶灰岩	1.37	0.74	0.07	0.12	1.14	5.48	0.99
	包磨山组(P ₁ b)	粘土岩	16.9	0.97	0.36	0.49	4.91	5.99	4.25
	梁山组 (P ₂ 1)	石英砂岩	52.3	1.83	2.27	6.37	17.1	5.79	358
		风化石英砂岩	60.2	/	2.15	2.01	7.54	6.36	57
		底部灰岩	2.88	0.52	0.08	0.19	2.79	3.12	1.16
	栖霞组(P ₂ q)	顶部灰岩	3.34	0.35	0.05	0.07	2.24	2.26	0.73
	21	顶部豹皮灰岩	6.44	0.15	0.06	0.1	11.8	2.77	0.59
		底部豹皮灰岩	7.15	0.03	0.06	0.08	3.95	2.72	0.73
		中下灰岩	3.24	0.45	0.03	0.07	0.39	6.08	0.41
		中部灰岩	3.49	0.47	0.03	0.07	1.16	3.08	0.62
		中部火岩	2.34	0.35	0.08	0.14	17.3	2.75	1.07
		」 「 即 部 火 岩	7.55	0.46	0.11	0.15	27.7	3.6	2.02
二叠系	茅口组(P ₂ m)	」 「 即 部 火 宕 」	1.82	0.3	0.07	0.1	5.89	2.74	0.85
(P)		中部火宕	12.3	0.34	0.07	0.09	4.64	3.4	1.05
		中下部 火宕	5.76	0.2	0.04	0.09	13.2	3.67	0.93
		<u></u> 低部火宕	2.22	0.04	0.09	0.16	12.7	4.29	1.27
		中部火宕	5.45	/	0.07	0.94	1.76	5.45	1.69
		坝部火石 一印 京朝	6.53	0.2	0.28	0.85	5.22	6.39	5.19
			256	24.8	24.1	41.9	392	210	214
			244	22.8	22.4	42.6	350	1/0	184
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	二段低部取密状幺武岩	10/	26.8	19.7	20.8	30/	216	184
	mx/自山乙氏石组 (Pem)	<u>一</u> 校 中 前 取 密 不 幺 武 石	190	22	10.8	42.8	281	109	205
	(1 ₂₋₃ cm)	二段上部幺氏用你石 一印由如將左巴	667	207	10./	43.8	300	164	454
		二权中部纵然石 二段币却與左鸟	156	26.6	21.0	32.8	310	32.6	210
		二权 坝 印 )	167	45.4	21.7	31.3	451	20.0	263
	1		107	тт	20.7	51.5	771	- 41.1	205

### 表 3-1 贵州西部相关地层∑REE、Sc、Ga、Nb、Cu、Zr 含量特征(10⁻⁶)

# 3.2 峨眉山玄武岩分布及岩石地球化学特征

## 3.2.1 峨眉山玄武岩分布特征

峨眉山大火成岩省在我国西南地区广泛发育,主要在云南东北部-贵州西

部-四川南部-广西西部地区出露(图 3-1),前人研究认为,形成时代约 ~260-255Ma,为地幔柱岩浆活动的产物。据 Xu 等估计,其初始体积可能≥3.8 Mkm^{3[4]},与地球上其他大火成岩省的规模相当(0.2-8.4Mkm³)^[5-6]。现今,峨眉山大火成岩省出露面积约为 0.25 Mkm²,厚度变化大,从几百-五千米不等,且保存体积仅约 0.3 Mkm³。综合比较,可计算出峨眉山大火成岩省剥蚀量约 3.5×M km³,即剥蚀程度大于 90%。



图 3-1 峨眉山大火成岩省玄武岩等厚线图[43]

## 3.2.2 峨眉山玄武岩岩石地球化学特征

### 1 样品采集

选择贵州威宁香炉山地区作为研究区,该区出露地层从下向上依次主要为二 叠系梁山组、栖霞组、茅口组、峨眉山玄武岩组、宣威组和第四系(图 3-2)。 一般而言,峨眉山玄武岩是一个岩类统称,是由玄武质熔岩、火山角砾岩、凝灰 岩等组成。贵州西部地区主要出露峨眉山玄武岩三段(P₂₋₃em³),次为峨眉山玄武岩组二段(P₂₋₃em²)。本节选择贵州威宁炉山铁多金属矿区已施工的钻探工程 ZK801(揭露峨眉山玄武岩三段 P₂₋₃em³)及 LS 剖面峨眉山玄武岩组二段(P₂₋₃em²)进 行取样测试分析。



图 3-2 贵州威宁县炉山铁多金属矿区地质简图 1-侏罗系泥岩; 2-三叠系白云岩、页岩; 3-上二叠统; 4-二叠纪宣威组; 5-二叠纪峨眉山玄武岩; 6-下二叠

统砂岩; 7-石炭系灰岩; 8-泥盆系灰岩; 9-志留系灰岩、页岩; 10-二叠纪辉绿岩; 11-断层

LS 剖面主要为峨眉山玄武岩组二段(P_{2.3}em²)灰色、青灰色致密状玄武岩, 底部为茅口组(P₂m)灰岩。出露厚约 120 米,采集具有代表性新鲜样品三件(LS-1、 LS-2、LS-3)。

钻探工程 ZK801 峨眉山玄武岩三段(P2.3em3)可分为五层,从老到新依次为:

P₂₋₃em³⁻¹: 灰绿色、暗红色、灰褐色火山角砾岩,角砾成份为凝灰质,胶结物为玄武质,角砾大小 0.05-10cm,含少量方解石脉。厚 24.5 米,按等距每件取样 24 件。

P₂₋₃em³⁻²: 暗红色凝灰质玄武岩,含少量鲕粒凝灰质;其中孔深 151.66-151.86 米为暗红色凝灰岩,含大量脉状绿泥石。厚 9.5 米,按等距每件取样 9 件。

P₂₋₃em³⁻³: 暗绿色蚀变玄武岩, 受断层破坏和改造, 见含灰白色脉状高岭石和方解石, 见绿泥石化。厚1.5米, 按等距每件取样2件。

P₂₋₃em³⁻⁴:紫红色凝灰岩,夹大量灰黄色、灰绿色斑点。厚 16.5 米,按等距每件取样 17 件。

P₂₋₃em³⁻⁵: 蚀变凝灰岩, 层理明显, 常见绿泥石、灰白色脉状铝土质及灰白色铝土质斑点。厚 8.5 米, 按等距每件取样 8 件。

#### 2 样品测试

主成矿元素分析(表 3-2)在贵州省地质矿产中心实验室完成,分析仪器为 Perkin-Elmer Sciex ELAN DRC-e型电感耦合等离子体质谱仪(ICP-MS),用标 样 OU-6、AMH-1及 GBPG-1 作质量监控,用 Rh 作内标检测仪器漂移,采用标 准曲线法校正。

### 3 主成矿元素地球化学特征

通过研究发现如下贵州西部峨眉山玄武岩主成矿元素地球化学特征:

(1)贵州西部峨眉山玄武岩稀土元素地球化学特征为"右倾"型,明显δCe负异常,δEu 正异常(图 3-3),与川滇黔峨眉山玄武岩稀土地球化学特征趋势相似。



图 3-3 贵州西部地区峨眉山玄武岩稀土元素原始地幔标准化分布型式图 1-P₂₋₃em³⁻⁵蚀变凝灰岩; 2-P₂₋₃em³⁻⁴凝灰岩; 3-P₂₋₃em³⁻³玄武岩; 4-P₂₋₃em³⁻⁴凝灰岩; 5-P₂₋₃em³⁻² 凝灰质玄武岩; 6-P₂₋₃em³⁻¹火山角砾岩; 7-P₂₋₃em²致密块状玄武岩

(2)峨眉山玄武岩组各段地层从老到新,稀土总量(∑REE)总体由低变高的 趋势,由 212×10⁻⁶-364×10⁻⁶,平均 247×10⁻⁶。其中,火山角砾岩(∑REE 平均值: 212×10⁻⁶)<致密块状玄武岩(∑REE 平均值: 223×10⁻⁶)<凝灰质玄武岩(∑REE 平均值: 232×10⁻⁶)<蚀变玄武岩(∑REE 平均值: 285×10⁻⁶)<凝灰岩(∑REE 平均值: 250×10⁻⁶)<蚀变凝灰岩(∑REE 平均值: 364×10⁻⁶)。按照《矿产资源 工业要求手册》风化壳型铌矿床最低工业品位 800×10⁻⁶,峨眉山玄武岩风化过程 中,稀土富集 3-4 倍,即可形成工业要求的矿床。

(3)峨眉山玄武岩组从老到新,Nb、Ga、Sc含量总体由低变高的趋势,其中, Nb 由 29.2×10⁻⁶-43.9×10⁻⁶,平均 35.1×10⁻⁶; Ga 由 18.7×10⁻⁶-35.4×10⁻⁶,平均 25.5×10⁻⁶; Sc 由 23.3×10⁻⁶-45.2×10⁻⁶,平均 29.4×10⁻⁶。特别地,按照《矿产资源 工业要求手册》风化壳型铌矿床最低工业品位 160×10⁻⁶,峨眉山玄武岩风化过程 中,Nb 富集 3-4 倍,即可形成工业要求的矿床。

(4)排除蚀变凝灰岩、玄武岩,峨眉山玄武岩组从老到新 V₂O₅、Ta 含量总体 由高变低的趋势。其中,V₂O₅ 由 1060×10⁻⁶-1477×10⁻⁶,平均 1282×10⁻⁶; Ta 由 1.30×10⁻⁶-2.54×10⁻⁶,平均 1.89×10⁻⁶。

地层代号	样品编号	岩性	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	∑REE	$V_2O_5$	Ga	Nb	Та	Sc
	ZK801G1	蚀变凝灰岩	13.7	24.5	47.6	6.42	27.9	5.69	2.05	4.91	0.73	3.85	0.68	1.90	0.26	1.71	0.25	142	1481	35.8	42.3	<1.0	45.6
	ZK801G2	蚀变凝灰岩	26.6	47.8	82.4	11.7	50.2	10.3	4.26	9.06	1.32	6.92	1.22	3.40	0.46	2.79	0.42	259	1417	35.3	44.0	<1.0	48.2
峨眉山玄	ZK801G3	蚀变凝灰岩	30.2	58.4	94.0	14.8	59.1	10.2	4.50	9.67	1.42	7.58	1.38	3.84	0.51	3.08	0.45	299	1836	35.3	48.3	<1.0	44.1
武岩三段	ZK801G4	蚀变凝灰岩	36.1	88.1	207	23.5	95.5	16.3	6.96	14.4	1.95	10.0	1.73	4.63	0.60	3.54	0.53	511	1503	37.1	46.8	<1.0	45.3
第五层	ZK801G5	蚀变凝灰岩	37.3	66.6	164	16.9	71.2	13.5	6.16	12.7	1.87	10.1	1.80	4.93	0.66	4.02	0.58	413	1358	34.8	42.9	<1.0	43.5
P ₂₋₃ em ³⁻⁵	ZK801G6	蚀变凝灰岩	41.0	58.1	184	15.4	68.4	16.0	7.54	14.8	2.22	12.0	2.11	5.70	0.76	4.66	0.67	433	1282	35.9	44.9	1.30	42.0
	ZK801G7	蚀变凝灰岩	32.4	80.2	163	25.5	106	18.5	7.96	15.8	2.13	10.3	1.68	4.32	0.53	3.15	0.45	472	1510	34.9	40.2	<1.0	47.8
	ZK801G8	蚀变凝灰岩	28.3	70.8	126	20.9	85.4	14.7	6.43	12.6	1.72	8.26	1.34	3.45	0.42	2.45	0.34	383	1428	34.2	42.1	<1.0	45.0
	ZK801G9	凝灰岩	71.3	21.4	55.9	7.74	41.7	12.3	6.11	13.4	2.56	15.7	3.00	8.14	1.12	6.60	0.98	268	817	24.7	52.2	1.80	25.9
	ZK801G10	凝灰岩	50.3	27.9	80.9	10.9	54.5	14.0	6.78	14.3	2.28	12.5	2.29	6.16	0.82	5.04	0.75	289	905	32.4	46.2	2.40	32.1
	ZK801G11	凝灰岩	19.8	35.6	84.1	11.9	52.7	10.2	4.78	9.54	1.33	6.59	1.06	2.58	0.31	1.89	0.26	243	1207	33.1	34.7	<1.0	35.2
峨眉山玄	ZK801G12	凝灰岩	23.7	44.9	101	14.6	63.9	11.8	5.38	10.6	1.52	7.64	1.28	3.37	0.43	2.59	0.36	293	1230	38.2	34.8	<1.0	36.0
武岩三段	ZK801G13	凝灰岩	20.4	3.25	18.5	4.60	29.3	8.20	4.04	7.48	1.21	6.49	1.07	2.68	0.34	2.00	0.28	110	1069	31.9	35.4	2.60	32.7
第四层	ZK801G14	凝灰岩	19.6	36.6	83.5	10.6	45.9	8.83	3.83	7.86	1.14	5.75	0.98	2.55	0.33	1.96	0.29	230	1070	39.2	40.1	1.60	31.7
第四层 P ₂₋₃ em ³⁻⁴	ZK801G15	凝灰岩	17.5	31.3	73.2	9.68	42.4	8.28	3.63	7.34	1.02	5.07	0.83	2.12	0.26	1.64	0.23	204	1019	34.7	38.9	1.60	34.2
	ZK801G16	凝灰岩	21.6	34.3	93.5	12.8	56.8	10.6	4.67	9.18	1.28	6.32	1.03	2.66	0.33	2.10	0.30	258	1040	33.0	37.9	1.40	31.9
-	ZK801G17	凝灰岩	23.2	36.5	86.5	11.8	52.1	10.1	4.44	9.03	1.27	6.30	1.05	2.73	0.34	2.07	0.30	248	1183	33.3	38.4	1.00	31.6
	ZK801G18	凝灰岩	34.1	47.2	110	13.9	60.0	12.4	5.75	12.1	1.74	8.93	1.52	3.82	0.46	2.75	0.39	315	1225	34.2	43.1	1.90	33.7

表 3-2 贵州西部地区峨眉山玄武岩主成矿元素含量及其平均值特征(10-6)

### 第3章 物源特征研究

地层代号	样品编号	岩性	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	∑REE	$V_2O_5$	Ga	Nb	Та	Sc
	ZK801G19	凝灰岩	27.4	36.0	85.1	11.3	50.2	10.3	4.54	9.44	1.38	7.09	1.21	3.14	0.40	2.43	0.35	250	1188	32.2	39.3	1.40	31.8
	ZK801G20	凝灰岩	24.8	38.7	92.2	12.0	52.0	10.0	4.49	9.12	1.31	6.71	1.14	2.98	0.37	2.20	0.31	258	1327	30.0	37.1	1.30	31.0
	ZK801G21	凝灰岩	22.0	40.6	93.3	12.7	55.8	10.6	4.51	9.49	1.34	6.73	1.09	2.73	0.33	1.99	0.27	263	1459	27.6	40.0	1.60	33.9
	ZK801G22	凝灰岩	20.9	41.7	95.6	12.7	53.6	10.1	4.46	9.30	1.30	6.48	1.05	2.71	0.33	2.01	0.29	262	1484	29.0	36.7	1.00	31.2
	ZK801G23	凝灰岩	26.0	38.4	92.6	12.3	54.9	11.7	5.57	11.1	1.63	8.25	1.34	3.33	0.41	2.56	0.37	270	1438	28.5	36.0	1.20	28.9
	ZK801G24	凝灰岩	29.2	40.0	100	12.7	54.4	10.6	4.12	10.4	1.52	7.71	1.30	3.39	0.43	2.63	0.38	279	1296	29.1	44.7	2.20	30.2
	ZK801G25	凝灰岩	20.2	25.1	72.6	11.2	51.7	9.93	3.59	8.17	1.15	5.74	0.95	2.50	0.33	2.05	0.29	216	1485	29.5	35.0	1.40	29.8
峨眉山玄 武岩三段	ZK801G26	蚀变玄武岩	58.3	50.7	107	13.4	55.5	10.9	4.53	11.9	2.08	12.2	2.29	6.16	0.80	4.57	0.66	341	2160	30.5	35.9	<1.0	33.0
第三层 P ₂₋₃ em ³⁻³	ZK801G27	蚀变玄武岩	35.1	28.9	70.2	10.0	45.1	9.41	3.76	8.85	1.32	7.15	1.34	3.77	0.49	3.04	0.46	229	1579	23.1	31.1	1.70	29.5
	ZK801G28	凝灰质玄武岩	23.8	34.6	76.1	9.91	42.8	8.36	3.30	7.77	1.13	5.82	1.02	2.67	0.35	2.11	0.30	220	1564	23.1	27.3	1.00	22.1
	ZK801G29	凝灰质玄武岩	27.1	38.3	83.7	11.2	49.1	9.63	3.71	8.61	1.29	6.77	1.19	3.13	0.42	2.47	0.36	247	1437	24.9	32.6	1.10	30.1
雌眉山支	ZK801G30	凝灰质玄武岩	26.2	36.5	81.3	10.9	47.4	9.17	3.57	8.31	1.26	6.46	1.14	3.06	0.39	2.42	0.35	238	1167	27.1	30.8	1.00	30.3
武岩三段	ZK801G31	凝灰质玄武岩	26.0	38.8	84.2	11.4	49.3	9.37	3.54	8.53	1.26	6.57	1.14	3.10	0.41	2.49	0.38	246	958	25.0	31.6	1.30	29.4
第二层	ZK801G32	凝灰质玄武岩	31.9	35.6	82.4	10.4	47.5	10.6	4.28	9.90	1.48	7.49	1.29	3.43	0.46	2.74	0.39	250	868	26.4	79.1	6.00	24.7
P ₂₋₃ em ³⁻²	ZK801G33	凝灰质玄武岩	24.1	36.7	76.1	10.5	45.4	8.92	3.40	8.14	1.20	6.17	1.08	2.84	0.37	2.26	0.33	227	866	21.9	27.2	1.10	24.6
	ZK801G34	凝灰质玄武岩	23.4	36.2	76.0	10.1	43.5	8.43	3.29	7.78	1.14	5.99	1.03	2.71	0.35	2.12	0.30	222	876	20.6	27.4	1.00	24.2
	ZK801G35	凝灰质玄武岩	24.5	36.1	74.6	10.1	43.8	8.46	3.30	7.93	1.17	6.17	1.09	2.90	0.38	2.39	0.34	223	824	20.4	27.1	1.10	24.8

续表 3-2 贵州西部地区峨眉山玄武岩主成矿元素含量及其平均值特征(10-6)

地层代号	样品编号	岩性	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	∑REE	$V_2O_5$	Ga	Nb	Та	Sc
	ZK801G36	凝灰质玄武岩	23.9	34.6	71.6	9.58	41.6	8.16	3.20	7.48	1.12	5.95	1.06	2.86	0.37	2.36	0.35	214	978	17.6	24.2	<1.0	22.0
峨眉山玄 段	ZK801G38	火山角砾岩	21.6	31.6	67.5	9.40	40.6	7.75	3.09	7.22	1.06	5.50	0.96	2.55	0.34	2.07	0.30	202	877	16.7	23.6	1.30	23.0
	ZK801G39	火山角砾岩	24.5	33.1	73.0	10.2	44.0	8.74	3.40	7.95	1.21	6.34	1.10	3.02	0.39	2.40	0.35	220	1072	22.1	27.5	1.60	26.3
	ZK801G40	火山角砾岩	24.4	31.8	71.3	9.76	42.6	8.32	3.28	7.60	1.17	6.09	1.08	2.89	0.39	2.38	0.35	213	1025	19.2	28.6	1.90	27.8
	ZK801G41	火山角砾岩	26.5	36.7	78.8	10.8	46.7	9.12	3.53	8.27	1.25	6.60	1.17	3.21	0.43	2.66	0.38	236	1002	19.5	31.0	2.00	27.1
	ZK801G42	火山角砾岩	26.4	36.4	82.8	11.2	48.6	9.47	3.49	8.73	1.29	6.76	1.19	3.17	0.41	2.57	0.38	243	1205	19.6	34.1	2.20	25.1
	ZK801G43	火山角砾岩	26.7	34.9	78.8	10.6	46.5	9.13	3.37	8.33	1.26	6.76	1.21	3.30	0.46	2.80	0.41	235	1280	18.7	32.9	2.80	27.9
	ZK801G44	火山角砾岩	19.8	29.2	64.4	8.68	37.0	6.88	2.55	6.16	0.91	4.90	0.87	2.46	0.34	2.23	0.34	187	1224	17.2	28.9	1.90	21.6
	ZK801G45	火山角砾岩	16.6	24.7	55.5	7.71	32.8	6.10	2.41	5.52	0.81	4.08	0.73	2.02	0.28	1.80	0.26	161	1168	16.0	23.6	1.10	21.7
	ZK801G47	火山角砾岩	22.5	31.2	66.8	9.37	40.8	8.03	3.16	7.24	1.11	5.81	1.03	2.82	0.38	2.34	0.35	203	1148	17.6	26.9	1.60	23.0
第一层	ZK801G48	火山角砾岩	25.3	36.9	77.2	10.6	45.9	9.15	3.51	8.23	1.24	6.61	1.16	3.15	0.42	2.58	0.37	232	1008	18.6	29.8	1.60	24.7
P ₂₋₃ em ³⁻¹	ZK801G49	火山角砾岩	22.5	35.5	72.9	9.82	42.3	8.14	3.10	7.42	1.10	5.78	1.02	2.77	0.38	2.34	0.35	216	938	15.9	26.8	1.00	23.0
	ZK801G50	火山角砾岩	36.1	41.4	80.3	10.4	45.1	8.98	3.51	8.55	1.35	7.69	1.44	4.13	0.56	3.40	0.50	253	1807	17.3	47.2	2.60	24.7
	ZK801G51	火山角砾岩	21.2	27.1	64.4	8.74	37.9	7.28	2.54	6.64	0.99	5.18	0.94	2.56	0.35	2.16	0.30	188	1420	12.2	28.1	4.20	17.9
	ZK801G52	火山角砾岩	21.6	29.0	67.2	9.21	39.0	7.43	2.67	6.63	0.99	5.37	0.97	2.71	0.37	2.31	0.34	196	1314	14.3	27.8	3.70	21.3
	ZK801G53	火山角砾岩	24.2	33.4	74.5	10.2	43.7	8.58	3.17	7.66	1.16	6.21	1.10	3.03	0.42	2.63	0.40	220	1306	17.6	30.5	3.00	23.2
	ZK801G54	火山角砾岩	25.5	34.0	76.2	10.3	44.5	8.7	3.22	7.77	1.18	6.28	1.14	3.17	0.43	2.65	0.39	225	1129	21.9	34.0	3.50	21.6
	ZK801G55	火山角砾岩	19.2	39.7	74.9	9.30	37.5	6.73	2.47	6.19	0.89	4.62	0.83	2.39	0.33	2.10	0.31	208	1383	15.1	27.5	1.40	20.2
	ZK801G56	火山角砾岩	19.3	36.6	70.0	8.78	36.1	6.6	2.42	6.00	0.88	4.64	0.84	2.35	0.32	2.07	0.30	197	1433	13.4	28.3	1.60	18.9

续表 3-2 贵州西部地区峨眉山玄武岩主成矿元素含量及其平均值特征(10-6)

#### 第3章 物源特征研究

地层代号	样品编号	岩性	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	∑REE	$V_2O_5$	Ga	Nb	Та	Sc
	ZK801G57	火山角砾岩	19.9	29.4	61.0	8.26	35.7	6.81	2.68	6.27	0.93	4.94	0.88	2.46	0.35	2.11	0.31	182	1217	18.0	24.0	<1.0	18.6
	ZK801G59	火山角砾岩	28.1	41.9	93.2	12.0	50.8	9.63	3.67	8.88	1.35	7.22	1.31	3.60	0.48	3.01	0.44	266	2351	27.7	32.2	1.00	28.1
	ZK801G60	火山角砾岩	19.1	28.1	71.8	8.86	37.2	6.80	2.25	6.20	0.90	4.88	0.90	2.54	0.35	2.28	0.34	192	1480	22.6	29.3	3.30	21.8
	ZK801G62	火山角砾岩	23.1	28.6	65.0	8.74	38.3	7.39	2.41	6.70	1.05	5.79	1.09	3.07	0.42	2.62	0.39	195	1442	23.7	30.3	2.00	26.1
	ZK801G63	火山角砾岩	23.0	32.9	71.1	9.59	42.0	8.09	3.17	7.39	1.09	5.80	1.04	2.89	0.38	2.42	0.37	211	1408	22.6	24.3	1.30	24.6
	ZK801G65	火山角砾岩	23.7	32.1	69.5	9.68	42.3	8.19	3.31	7.48	1.10	5.86	1.08	2.94	0.40	2.55	0.38	211	1326	22.0	23.2	1.00	20.8
峨眉山玄	LS-1	致密块状玄武岩	25.7	27.5	57.2	6.15	25.8	5.44	1.83	5.82	0.90	4.45	0.91	2.56	0.36	2.29	0.34	167	1401	24.1	41.9	2.77	24.8
武岩二段 P ₂₋₃ em ²	LS-2	致密块状玄武岩	35.9	37.8	83.3	10.9	46.5	10.3	3.06	10.5	1.50	7.66	1.37	3.75	0.49	3.00	0.42	256	1249	22.4	42.6	2.82	22.8
	LS-3	致密块状玄武岩	30.6	37.6	81.6	11.1	45.9	9.55	2.88	9.58	1.34	6.47	1.19	3.16	0.38	2.42	0.33	244	1611	26.4	31.3	2.04	45.4
P2-3em3-5主成矿元素含量平均值			30.7	61.8	133	16.9	70.5	13.1	5.73	11.7	1.67	8.64	1.49	4.02	0.52	3.18	0.46	364	1477	35.4	43.9	1.30	45.2
P2-3em ³⁻⁴ 主成矿元素含量平均值			27.8	34.1	83.5	11.4	51.3	10.6	4.75	9.9	1.47	7.65	1.31	3.39	0.43	2.62	0.37	250	1202	31.8	39.4	1.63	31.9
P2-3em3-3 主成矿元素含量平均值			46.7	39.8	88.7	11.7	50.3	10.1	4.14	10.4	1.70	9.68	1.82	4.96	0.65	3.81	0.56	285	1870	26.8	33.5	1.70	31.3
P2-3em3-2主成矿元素含量平均值			25.7	36.4	78.4	10.4	45.6	9.01	3.51	8.27	1.23	6.38	1.12	2.97	0.39	2.37	0.35	232	1060	23.0	34.1	1.70	25.8
P2-3em3-1主成矿元素含量平均值			23.4	33.2	72.0	9.67	41.6	8.00	3.02	7.29	1.09	5.82	1.05	2.88	0.39	2.44	0.36	212	1290	18.7	29.2	2.07	23.3
P2-3em ² 主成矿元素含量平均值			30.7	34.3	74.0	9.38	39.40	8.43	2.59	8.64	1.25	6.19	1.16	3.16	0.41	2.57	0.36	223	1420	24.3	38.6	2.54	31.0
贵州西部地区峨眉山玄武岩 主成矿元素含量平均值			26.9	37.8	84.4	11.2	48.6	9.58	3.91	8.86	1.31	6.89	1.21	3.25	0.43	2.62	0.38	247	1282	25.5	35.1	1.89	29.4

续表 3-2 贵州西部地区峨眉山玄武岩主成矿元素含量及其平均值特征(10%)

注: 贵州西部地区峨眉山玄武岩主成矿元素含量平均值为 P₂₋₃em³⁻⁵、P₂₋₃em³⁻⁴、P₂₋₃em³⁻³、P₂₋₃em³⁻²、P₂₋₃em³⁻¹、P₂₋₃em 样品主成矿元素的含量平均值。

## 3.3 锆石 U-Pb 同位素年代学及其对物源限制研究

锆石具有极低的吉布斯能^[44],晶体结构特别稳定,在各种地质环境中很容易结晶。因而是岩浆作用、变质作用和热液作用中常见的副矿物,在沉积、岩浆和变质岩中普遍存在。同时,锆石是具有高度稳定性的矿物,矿物形成时的物理和化学(特别是元素和同位素)特征能够持久保存下来,且富含 U、Th 等放射性元素,普通铅含量低,封闭温度高,离子扩散速率低等特点,是 U-Pb 法定年的最理想对象^[45-47]。

近年来,碎屑锆石 U-Pb 定年技术的不断升级使其成为沉积地层研究的重要手段,沉积地层中的碎屑锆石能够记录发生在地层沉积前或同期的岩浆事件,这种信息已经被用来确定沉积物的潜在源区和讨论源区的构造演化^[48-51]。 碎屑锆石的最年轻年龄可以用来限制地层最大沉积年龄,尤其当源区的岩浆作 用和合适的沉降中心的沉积作用是连续的时候^[52]。但在利用碎屑锆石分析沉积 物最大沉积年龄和沉积物源时应注意滞后时间(即锆石出现于沉积物中的时间 与晶体形成时间的间隔),它是控制碎屑锆石年龄谱的关键因素之一^[53]。

关于峨眉山大火成岩省的形成时代的研究的文献较多,较为集中的认为形成时代为~260-255Ma,但较少有文献系统采集不同喷发期次的玄武岩或凝灰岩 开展锆石测年,本文通过采集峨眉山玄武岩组二段到四段的玄武岩及凝灰岩, 开展锆石的形成时代研究,确定峨眉山玄武岩喷发的早晚年龄。同时,采集典 型矿石开展锆石 U-Pb 年代学研究,结合矿床矿相学观察,通过对比母岩和典 型矿石锆石的形成时代,进一步探讨了矿床的成矿物质来源。

## 3.3.1 样品和分析方法

在峨眉山玄武岩组各段和稀土多金属矿(化)层较发育的贵州威宁-云南鲁 甸水磨镇地区,选择 SP01 剖面(图 3-4),从峨眉山玄武岩组二段开始,至峨 眉山玄武组四段五亚段结束,共采集玄武岩 4 件、凝灰岩 4 件。样品的野外采 集重量约 5 kg,各样品地质情况具体如下:



图 3-4 锆石 U-Pb 同位素年代学及 Sr、Nd 同位素样品采集分布图 1-三叠系-第四系; 2-宣威组; 3-峨眉山玄武岩组; 4-下二叠统-寒武系; 5-前寒武系; 6-辉绿岩; 7-断层; 8-省界线; 9-地名; 10-采样剖面及编号; 11-采样点

根据岩性、喷发旋回、喷发韵律将测区出露面积最宽的峨眉山玄武岩划分为 四段,其中第四段划分为5个亚段(图 3-5):

一段:火山集块岩,研究区未出露;

二段: 致密块状玄武岩与杏仁状玄武岩组成的四个喷发韵律, 致密块状玄武 岩位于每一个喷发韵律的底部, 且柱状节理较发育, 杏仁状玄武岩位于每一个喷 发韵律的顶部, 且向上杏仁逐渐增多, 逐渐变大。岩石中还发育熔岩流动使气孔 压扁、拉长形成的流动构造。样品 SP01-H8 采自本段, 岩性为致密块状玄武岩。

三段:斑状玄武岩与含斑杏仁状玄武岩组成四个喷发韵律,斑状玄武岩中斑 晶较大,多为长约 1-4cm 的长条状斜长石斑晶,斑晶呈散斑状或聚集呈放射状、 菊花状分布,代表岩浆快速喷发的特征。含斑杏仁状玄武岩位于喷发韵律的顶部。 样品 SP01-H1 采自本段,岩性为斑状玄武岩。



图 3-5 峨眉山玄武岩柱状图

四段: 致密块状与杏仁状玄武岩及 凝灰质泥岩组成的五个喷发旋回, 对应 五个亚段。一亚段:下部为致密块状玄 武岩与杏仁状玄武岩组成的2个喷发韵 律,样品 SP01-H2 采自本段,岩性为致 密块状玄武岩。顶部为紫红色凝灰岩, 厚约 0.1m, 样品 SP01-H3 采自本段。二 亚段:下部为致密块状玄武岩与杏仁状 玄武岩组成的1个喷发韵律。顶部为紫 红色凝灰岩,厚约 0.6m,样品 SP01-H4 采自本段。三亚段:主体为致密块状玄 武岩、含杏仁玄武岩与杏仁状玄武岩组 成的4个喷发韵律。顶部为紫红色凝灰 岩,厚约1.6m,样品SP01-H5采自本段。 四亚段: 主体为致密块状亥武岩与杏仁 状亥武岩组成的3个喷发韵律。顶部为 紫红色及少量灰白色凝灰岩夹少量凝灰 质角砾岩。厚约 3m,样品 SP01-H6 采 自本段,岩性为致密块状玄武岩。五亚 段:为致密块状玄武岩与杏仁状玄武岩 组成的 2 个喷发韵律,样品 SP01-H2 采 自本段,岩性为致密块状玄武岩。

峨眉山玄武岩之上,龙潭组/宣威组之上常发育本本的研究主体-峨眉山玄武 岩古风化-沉积型稀土多金属矿(化)层(图 3-4),本次在云南鲁甸水磨镇 (SMZD01-H8)、威宁大寨(TC16H4)和炉山(QMG02-H4)采集典型矿石各 1件,其中,SMZD01-H8和TC16H4样品除富稀土、铌、镓外,铝局部已达工 业品位,三件样品呈块状构造,泥质结构。

样品锆石单矿物分选在河北省廊坊区域地质调查研究院地质实验室完成, 单矿物分选采用常规方法,即经粉碎后采用传统的重力和磁选的方法分选和富

集,随后在双目镜下进行手工挑纯。在双目镜下随机将不同形态和大小的锆石 用环氧树脂固定制靶,进行透射光和反射光观察、照相。

将锆石抛光至暴露内部后,在阴极发光(CL)下观察、记录显微结构,重点记录具有以下特征的锆石: (1)长/宽比为1:1~1:2; (2) 粒长为100~250µm; (3)灰度相对较低; (4)明显发育同心振荡环带, 作为锆石 U-Pb 同位素测量时选择分析点的依据。其中,CL 图像观察在中国科学院地球化学研究所矿床地球化学国家重点实验室进行,采用配置 Gatan 公司 Mono CL 3 + 型阴极荧光探头的 Quanta 400FEG 扫描电镜完成。

激光剥蚀系统为 Coherent 公司生产的 193 nm 准分子激光系统, ICP-MS 为 Agilent 7700x 电感耦合等离子质谱仪, U-Pb 同位素定年中采用锆石标准 91500 作外标进行同位素分馏校正。锆石样品的 U-Pb 年龄谐和图绘制和年龄权重平均 计算均采用 Isoplot)完成, 见表 3-3。锆石稀土等元素含量利用多个 USGS 参考 玻璃 (NIST 610, BHVO-2G, BCR-2G, BIR-1G) 作为多外标、Si 作内标的方 法进行定量计算, 见表 3-4。

### 3.3.2 锆石 U-Pb 同位素年代学研究

本文所测试的锆石的 Th 和 U 含量范围分别为(表 3-3): 25.0~774×10⁻⁶, 平均 125×10⁻⁶; 30.3~1132×10⁻⁶,平均 211×10⁻⁶;相应的 Th/U 比值范围为 0.16~1.33,平均 0.61,具有岩浆成因锆石的典型特征。

### 一、峨眉山玄武岩各喷发阶段锆石表面年龄

1、峨眉山玄武岩组二段: 在样品 SP01-H8 中, 所分析的锆石中有 26 粒给 出了较均一的 ²⁰⁶Pb/²³⁸U 表面年龄, 其加权平均年龄为(261.0±3.6) Ma(95%置信 度, 下同), 相应的 MSWD 为 3.6(表 3-3、图 3-6、图 3-7)。



图 3-6 研究区峨眉山玄武岩组二段样品 SP-01-H8 锆石 U-Pb 同位素谐和曲线图



图 3-7 研究区峨眉山玄武岩组二段样品 SP-01-H8 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

2、峨眉山玄武岩组三段: 在样品 SP01-H1 中, 所分析的锆石中有 17 粒给出 ²⁰⁶Pb/²³⁸U 表面年龄(表 3-3、图 3-8): 1 粒锆石表面年龄(3419±33.4) Ma; 3 粒锆石表面年龄范围(2228±28.5)-(2608±35.0)Ma; 8 粒锆石表面年龄范围(1551±20.9)-(1831±28.1)Ma; 4 粒锆石表面年龄范围(703±9.4)-(1455±23.0)Ma;

2 粒锆石表面年龄范围(278±5.1)Ma。这一锆石 ²⁰⁶Pb/²³⁸U 表面年龄分布特征, 与峨眉山玄武岩三段岩浆快速喷发特征吻合,获得的锆石主要为捕获的基底锆 石。



图 3-8 研究区峨眉山玄武岩组三段样品 SP-01-H1 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 µm)

3、峨眉山玄武岩组四段: 共采样 6 件, 其中第一亚段顶部凝灰岩 SP01-H3、 第二亚段顶部凝灰岩 SP01-H4 及第三亚段顶部凝灰岩 SP01-H5 均未挑选到锆 石。

(1)峨眉山玄武岩组四段第一亚段底部:在样品 SP01-H2(玄武岩)中,所
分析的锆石中有 9 粒给出 ²⁰⁶Pb/²³⁸U 表面年龄(表 3-3、图 3-9):1 粒锆石表面
年龄(2201±24.6) Ma;4 粒锆石表面年龄范围(1445±30.7)-(1977±30.0)Ma;



图 3-9 研究区峨眉山玄武岩组四段第一亚段样品 SP-01-H2 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

2 粒锆石表面年龄范围(410±4.6)-(442±6.1)Ma; 2 粒锆石表面年龄范围 (253±4.0)-(256±4.3)Ma。

(2) 峨眉山玄武岩组四段第四亚段: 在样品 SP01-H6(凝灰岩)中,所分 析的锆石中有 19 粒给出 ²⁰⁶Pb/²³⁸U 表面年龄(表 3-3、图 3-10): 2 粒锆石表面 年 龄 范 围 (1073±10.2)-(1134±17.5)Ma; 15 粒 锆 石 表 面 年 龄 范 围 (808±10.3)-(925±11.0)Ma; 1 粒锆石表面年龄范围(264±4.2)Ma; 1 粒锆石表面年 龄范围(137±2.5)Ma,可能与高 U 和 Th 含量导致晶体放射性损伤(蜕晶化),造成 锆石形成存在一定的 Pb 丢失,而获得较小的锆石 ²⁰⁶Pb/²³⁸U 表面年龄;上述锆 石 ²⁰⁶Pb/²³⁸U 表面年龄分布特征,与峨眉山玄武岩三段岩浆快速喷发特征吻合, 获得的锆石主要为捕获的基底锆石。



图 3-10 研究区峨眉山玄武岩组四段第四亚段样品 SP-01-H6 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

(3) 峨眉山玄武岩组四段第五亚段顶: 在样品 SP01-H7(玄武岩)中,所分析的锆石中有 17 粒给出了较均一的 ²⁰⁶Pb/²³⁸U 表面年龄,其加权平均年龄为 (259.1±2.2) Ma,相应的 MSWD 为 0.70(表 3-3、图 3-11、图 3-12)。





图 3-11 研究区峨眉山玄武岩组四段第五亚段样品 SP-01-H7 锆石 U-Pb 同位素谐和曲线图

图 3-12 研究区峨眉山玄武岩组四段第五亚段样品 SP-01-H7 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

二、典型矿石锆石表面年龄

1、在样品 SMZD01-H8 中,所分析的锆石中有 30 粒给出了较均一的 ²⁰⁶Pb/²³⁸U 表面年龄,其加权平均年龄为(258.4±1.4) Ma,相应的 MSWD 为 1.06(表 3-3、图 3-13、图 3-14)。







图 3-14 研究区典型矿石样品 SMZD01-H8 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

2、在样品 TC16H4D 中,所分析的锆石中有 30 粒给出了较均一的 ²⁰⁶Pb/²³⁸U 表面年龄,其加权平均年龄为(261.1±1.7) Ma,相应的 MSWD 为 1.20(表 3-3、图 3-15、图 3-16)。





图 3-15 研究区典型矿石样品 TC16H4D 锆石 U-Pb 同位素谐和曲线图

图 3-16 研究区典型矿石样品 TC16H4D 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

3、在样品 QMG02-H4 中,所分析的锆石中有 30 粒给出了较均一的²⁰⁶Pb/²³⁸U 表面年龄,其加权平均年龄为(260.2±2.1) Ma,相应的 MSWD 为 1.70(表 3-3、图 3-17、图 3-18)。







图 3-18 研究区典型矿石样品 QMG02-H4 锆石锆石 CL 图像、U-Pb 同位素 测量点及其表面年龄点(红色圆圈, d=32 μm)

### 三、锆石 U-Pb 同位素年代对物源约束讨论

本文采集样品中的锆石具有典型的岩浆成因特征。其中,峨眉山玄武岩组 二段至四段第五亚段玄武岩(或凝灰岩)锆石²⁰⁶Pb/²³⁸U表面年龄为:(261.0±3.6)-(259.1±2.2) Ma。同时,三件典型矿石中锆石²⁰⁶Pb/²³⁸U表面年龄为: (261.1±1.7)-(258.4±1.4) Ma。玄武岩(或凝灰岩)和典型矿石锆石²⁰⁶Pb/²³⁸U表 面年龄高度吻合,且与峨眉山大火成岩省岩浆事件的定年结果(260~255Ma)^[1,54-56] 几近相同,表明矿石中的锆石源自峨眉山玄武岩风化产物。
公垢	Th	U	Th/U				l	北值						表	面年出	铃(Ma)			
ン7171 ト	10	1.6		207Pb/206	1	207Pb/23	1	206Pb/23		208Pb/23	1	207Pb/20	1	207Pb/23	1	206Pb/23	1	208Pb/23	1
尽	10	)-0		Pb	lσ	5U	lσ	8U	lσ	2Th	lσ	6Pb	lσ	5U	lσ	8U	Iσ	2Th	lσ
QMG0	2-H4																		
A1	56.8	119	0.48	0.0505	0.0028	0.282	0.015	0.0408	0.0007	0.0122	0.0005	217	130	252	12	258	4	246	9
A2	37	66.2	0.56	0.054	0.0035	0.304	0.021	0.0407	0.0008	0.0133	0.0005	372	153	269	16	257	5	267	11
A3	61.9	117	0.53	0.0501	0.0028	0.285	0.016	0.0415	0.0007	0.0126	0.0004	198	130	254	13	262	5	253	7
A4	76.8	99.4	0.77	0.0518	0.0028	0.292	0.016	0.0409	0.0007	0.0127	0.0004	280	124	260	12	258	4	255	7
A5	77.9	157	0.5	0.0516	0.0024	0.286	0.012	0.0408	0.0008	0.0127	0.0004	333	103	256	10	258	5	255	7
A6	102	196	0.52	0.051	0.002	0.294	0.011	0.0421	0.0007	0.0132	0.0003	243	89	262	9	266	4	265	7
A7	206	173	1.19	0.0536	0.0025	0.294	0.013	0.0398	0.0005	0.0122	0.0002	367	101	262	10	251	3	245	5
A8	81.3	151	0.54	0.052	0.0023	0.294	0.014	0.0407	0.0007	0.0132	0.0004	287	97	262	11	257	4	265	8
A9	200	251	0.8	0.051	0.0017	0.278	0.01	0.0397	0.0006	0.0123	0.0003	239	75	249	8	251	4	248	5
A10	65.6	125	0.52	0.0533	0.0029	0.29	0.015	0.0401	0.0009	0.0129	0.0005	343	122	259	12	253	6	259	10
A11	84.1	177	0.48	0.0527	0.0024	0.293	0.012	0.0406	0.0006	0.0126	0.0004	317	102	261	9	257	4	252	7
A12	55.3	123	0.45	0.0524	0.0027	0.301	0.016	0.0419	0.0008	0.0131	0.0004	306	116	267	13	265	5	263	9
A13	327	367	0.89	0.0494	0.0018	0.285	0.01	0.0419	0.0007	0.013	0.0003	165	90	254	8	265	4	261	5
A14	416	671	0.62	0.0519	0.0014	0.301	0.009	0.0419	0.0006	0.0131	0.0003	280	61	267	7	264	4	263	5
A15	64	135	0.48	0.0525	0.0026	0.3	0.016	0.0412	0.0008	0.013	0.0004	309	113	266	12	260	5	261	8
A16	69	137	0.51	0.0521	0.0031	0.298	0.017	0.0419	0.0009	0.0128	0.0004	287	135	265	14	264	5	258	8
A17	39.8	102	0.39	0.0518	0.0027	0.302	0.017	0.0421	0.0009	0.0132	0.0005	276	120	268	13	266	6	265	11
A18	63.6	110	0.58	0.0546	0.0038	0.301	0.02	0.0413	0.0009	0.0127	0.0004	398	156	267	16	261	5	255	7
A19	88.2	143	0.62	0.0522	0.0023	0.296	0.014	0.0409	0.0007	0.0122	0.0004	300	102	263	11	259	4	246	7
A20	150	315	0.48	0.0514	0.0017	0.292	0.011	0.0411	0.0009	0.0125	0.0003	257	71	260	9	260	5	251	6

表 3-3 贵州西部玄武岩、凝灰岩及典型矿石锆石 U-Pb 同位素组成和表面年龄

八七	Th	U	Th/U				ł	北值						表ī	面年出	泠(Ma)			
ガが	10	<b>N-6</b>		207Pb/206	1	207Pb/23	1	206Pb/23	1	208Pb/23	1	207Pb/20	1	207Pb/23	1	206Pb/23	1	208Pb/23	1
凨	П	<b>)</b> **		Pb	10	5U	10	8U	lσ	2Th	lσ	6Pb	Iσ	5U	Iσ	8U	Iσ	2Th	Iσ
A21	53.5	99.4	0.54	0.051	0.0027	0.289	0.015	0.0411	0.0007	0.0131	0.0004	239	116	258	12	260	5	263	8
A22	64.1	87.7	0.73	0.0496	0.003	0.29	0.018	0.0421	0.0008	0.0132	0.0004	176	139	258	14	266	5	266	8
A23	125	256	0.49	0.0512	0.0018	0.302	0.012	0.0422	0.0007	0.0135	0.0004	250	83	268	9	267	4	270	7
A24	122	192	0.63	0.0533	0.002	0.313	0.012	0.043	0.0007	0.014	0.0003	339	90	276	9	271	4	280	7
A25	774	642	1.21	0.0529	0.0013	0.293	0.008	0.0401	0.0005	0.0121	0.0002	324	28	261	6	254	3	244	5
A26	61.1	95.4	0.64	0.0513	0.0027	0.288	0.015	0.041	0.0007	0.0125	0.0004	254	124	257	12	259	4	251	8
A27	59.7	129	0.46	0.0498	0.0022	0.288	0.013	0.0419	0.0006	0.0131	0.0004	187	104	257	10	265	4	263	8
A28	132	241	0.55	0.0532	0.0016	0.304	0.01	0.0415	0.0006	0.0129	0.0003	345	67	270	8	262	4	258	6
A29	54.3	79.5	0.68	0.0498	0.0026	0.269	0.014	0.0402	0.0008	0.0126	0.0004	187	120	242	11	254	5	254	9
A30	80.3	136	0.59	0.0522	0.0029	0.311	0.016	0.0436	0.0009	0.0125	0.0003	295	128	275	13	275	6	250	7
SMZD	)1-H8																		
B1	59.4	83.6	0.71	0.0507	0.0031	0.29	0.018	0.0419	0.0008	0.0128	0.0004	233	141	259	14	265	5	257	9
B2	63.7	124	0.51	0.0529	0.0027	0.297	0.015	0.0407	0.0006	0.0125	0.0003	324	117	264	12	257	4	251	7
B3	276	290	0.95	0.0495	0.0016	0.284	0.009	0.0418	0.0007	0.013	0.0003	172	74	254	7	264	4	260	5
B4	167	150	1.12	0.052	0.0019	0.292	0.01	0.0408	0.0006	0.0126	0.0003	287	85	260	8	258	4	254	6
В5	60.1	107	0.56	0.0532	0.0023	0.3	0.014	0.0405	0.0007	0.0125	0.0004	339	100	266	11	256	4	251	8
B6	45.4	80.2	0.57	0.0538	0.0031	0.306	0.017	0.0415	0.0007	0.0143	0.0005	365	128	271	13	262	4	286	9
B7	59.1	90.6	0.65	0.0527	0.0024	0.293	0.014	0.0402	0.0007	0.0138	0.0004	322	104	261	11	254	5	276	8
B8	83.9	167	0.5	0.0534	0.0021	0.303	0.013	0.0414	0.0007	0.0134	0.0004	346	91	269	10	261	4	268	7
B9	53.6	99.4	0.54	0.0547	0.0025	0.306	0.013	0.0409	0.0006	0.0125	0.0004	467	100	271	10	258	4	250	8
B10	126	251	0.5	0.0519	0.0016	0.295	0.01	0.0414	0.0007	0.0132	0.0003	280	70	263	8	261	4	264	7
B11	99.8	178	0.56	0.0514	0.0019	0.29	0.011	0.041	0.0006	0.0133	0.0004	261	85	258	9	259	4	267	7
B12	125	154	0.81	0.0492	0.0021	0.272	0.012	0.0403	0.0007	0.0128	0.0003	167	102	244	10	254	5	257	6

八七	Th	U	Th/U				ł	北值						表	面年出	泠 (Ma)			
ガ忉	10			207Pb/206	1	207Pb/23	1	206Pb/23		208Pb/23	1	207Pb/20	1	207Pb/23	1	206Pb/23	1	208Pb/23	1
只	10	<b>)</b> -0		Pb	lσ	5U	lσ	8U	lσ	2Th	lσ	6Pb	lσ	5U	lσ	8U	lσ	2Th	Iσ
B13	181	282	0.64	0.0517	0.0019	0.28	0.01	0.0396	0.0005	0.0121	0.0003	272	83	251	8	251	3	244	5
B14	87.7	177	0.5	0.0509	0.0021	0.287	0.012	0.0409	0.0005	0.0135	0.0004	239	96	257	9	259	3	272	9
B15	138	273	0.51	0.0517	0.0017	0.295	0.01	0.0414	0.0006	0.0129	0.0003	272	76	262	8	262	4	259	6
B16	273	258	1.06	0.0498	0.0017	0.286	0.01	0.0417	0.0006	0.0134	0.0003	183	80	256	8	263	3	268	5
B17	58.9	111	0.53	0.0509	0.0022	0.293	0.013	0.0417	0.0008	0.0131	0.0004	235	100	261	10	264	5	262	9
B18	189	289	0.65	0.054	0.0021	0.305	0.011	0.0407	0.0007	0.0131	0.0003	372	87	270	9	257	4	264	7
B19	109	209	0.52	0.0519	0.0019	0.297	0.01	0.0415	0.0007	0.0133	0.0004	283	81	264	8	262	4	267	7
B20	53.8	118	0.46	0.0507	0.0025	0.29	0.013	0.0419	0.0008	0.0128	0.0004	228	108	259	10	265	5	258	8
B21	154	257	0.6	0.0537	0.002	0.31	0.011	0.0418	0.0006	0.013	0.0003	367	83	274	9	264	4	260	6
B22	225	282	0.8	0.0529	0.0019	0.293	0.01	0.0402	0.0006	0.0125	0.0002	324	81	261	8	254	3	251	5
B23	174	316	0.55	0.0528	0.0015	0.295	0.009	0.0404	0.0006	0.0123	0.0003	320	65	263	7	255	4	246	5
B24	49.5	71.4	0.69	0.0543	0.0038	0.315	0.023	0.0418	0.0009	0.0141	0.0006	383	192	278	17	264	5	282	12
B25	106	215	0.49	0.0511	0.0017	0.286	0.011	0.0404	0.0005	0.0128	0.0003	256	78	255	8	256	3	257	7
B26	44.2	78.2	0.57	0.0548	0.0033	0.298	0.017	0.04	0.0008	0.0121	0.0004	406	169	265	13	253	5	244	8
B27	197	212	0.93	0.0517	0.0018	0.295	0.011	0.0413	0.0006	0.0127	0.0003	272	78	262	9	261	4	255	5
B28	66.5	118	0.56	0.055	0.0033	0.301	0.016	0.0403	0.0007	0.0127	0.0004	409	103	267	13	255	4	255	8
B29	151	312	0.48	0.0517	0.0018	0.286	0.011	0.0401	0.0006	0.0124	0.0003	272	78	256	9	253	4	249	6
B30	48.3	92.6	0.52	0.0495	0.0025	0.271	0.013	0.0404	0.0007	0.0132	0.0004	172	116	243	11	256	4	265	9
TC16H	4D																		
C1	76.4	101	0.75	0.0528	0.0035	0.303	0.019	0.0423	0.0009	0.0132	0.0005	324	150	269	14	267	6	265	10
C2	41.6	82.3	0.51	0.0526	0.0029	0.302	0.017	0.0415	0.0008	0.0131	0.0004	322	124	268	13	262	5	264	8
C3	95.9	187	0.51	0.0532	0.002	0.303	0.011	0.0415	0.0007	0.0141	0.0004	345	82	269	9	262	4	283	8
C4	56.6	64.4	0.88	0.0511	0.0034	0.293	0.019	0.0422	0.0009	0.0124	0.0005	256	156	261	15	266	6	249	10

八七	Th	U	Th/U				ł	北值						表	面年出	泠(Ma)			
ガが	10	-6		207Pb/206	1	207Pb/23	1	206Pb/23	1	208Pb/23	1	207Pb/20	1	207Pb/23	1	206Pb/23	1	208Pb/23	1
凤	IU	0		Pb	10	5U	10	8U	16	2Th	16	6Pb	10	5U	10	8U	10	2Th	10
C5	184	286	0.64	0.05	0.0016	0.276	0.009	0.0398	0.0006	0.0123	0.0003	195	72	247	7	251	4	247	6
C6	95.6	176	0.54	0.0528	0.0024	0.298	0.013	0.041	0.0007	0.0124	0.0004	320	104	265	11	259	4	249	7
C7	75.4	151	0.5	0.0505	0.0021	0.292	0.013	0.0419	0.0008	0.0149	0.0005	220	101	260	10	265	5	300	11
C8	43.1	79	0.55	0.0513	0.0029	0.287	0.016	0.0413	0.0008	0.0135	0.0005	254	136	256	13	261	5	272	10
C9	108	179	0.6	0.0496	0.0021	0.274	0.012	0.0402	0.0006	0.0124	0.0003	189	100	246	9	254	4	248	7
C10	135	165	0.82	0.0491	0.0021	0.274	0.011	0.0406	0.0006	0.013	0.0003	154	103	246	9	256	4	261	5
C11	120	178	0.67	0.0505	0.0024	0.282	0.013	0.0408	0.0006	0.0135	0.0003	217	109	252	10	258	4	271	7
C12	61.9	99.1	0.62	0.0532	0.0024	0.315	0.015	0.0427	0.0008	0.0139	0.0004	345	104	278	12	270	5	279	8
C13	132	228	0.58	0.0522	0.0025	0.292	0.013	0.0409	0.0006	0.0132	0.0003	295	105	260	10	258	4	265	7
C14	60	97.4	0.62	0.0547	0.003	0.317	0.017	0.0423	0.0007	0.0137	0.0004	398	122	280	13	267	4	275	8
C15	68.2	95.1	0.72	0.0511	0.0033	0.294	0.018	0.0422	0.0008	0.0132	0.0004	243	144	262	14	267	5	265	8
C16	104	201	0.52	0.0533	0.0019	0.306	0.012	0.0415	0.0006	0.0125	0.0003	343	80	271	9	262	4	251	6
C17	63.6	142	0.45	0.0543	0.0024	0.31	0.014	0.0419	0.0007	0.0134	0.0004	383	100	274	11	265	4	268	8
C18	71.2	137	0.52	0.0542	0.0023	0.321	0.016	0.0427	0.0008	0.0131	0.0004	389	94	283	12	269	5	264	8
C19	110	212	0.52	0.0516	0.002	0.296	0.011	0.0418	0.0007	0.0128	0.0003	333	82	264	9	264	4	257	6
C20	73.1	137	0.53	0.0549	0.0023	0.307	0.012	0.0412	0.0007	0.0141	0.0004	409	90	272	9	260	4	283	8
C21	125	257	0.49	0.0522	0.0019	0.3	0.011	0.0417	0.0007	0.0138	0.0003	300	81	267	9	263	4	276	7
C22	50.4	89.2	0.56	0.0545	0.0033	0.316	0.019	0.042	0.0007	0.0136	0.0004	391	135	279	15	265	4	272	8
C23	34.8	81.8	0.43	0.0537	0.0028	0.309	0.017	0.0418	0.0008	0.014	0.0005	367	121	274	13	264	5	281	10
C24	155	297	0.52	0.0527	0.0022	0.298	0.013	0.0408	0.0006	0.0129	0.0003	317	94	265	10	257	4	260	6
C25	43.2	67.4	0.64	0.0551	0.0035	0.315	0.02	0.0421	0.0007	0.0138	0.0005	413	143	278	15	266	5	277	9
C26	66.5	95.6	0.7	0.0543	0.0035	0.298	0.018	0.0403	0.0008	0.0127	0.0004	383	146	265	14	254	5	255	9
C27	102	212	0.48	0.0518	0.002	0.296	0.011	0.0418	0.0005	0.0133	0.0003	276	89	264	9	264	3	266	6

公拆	Th	U	Th/U				ł	北值						表	面年出	泠(Ma)			
カか	10	<b>)</b> -6		207Pb/206	1σ	207Pb/23	1σ	206Pb/23	16	208Pb/23	10	207Pb/20	1σ	207Pb/23	1σ	206Pb/23	1σ	208Pb/23	1σ
	П	)		Pb	10	5U	10	8U	10	2Th	10	6Pb	10	5U	10	8U	10	2Th	10
C28	138	277	0.5	0.051	0.0017	0.283	0.01	0.0404	0.0005	0.0127	0.0004	243	78	253	8	255	3	254	7
C29	128	243	0.53	0.0541	0.0021	0.303	0.011	0.0413	0.0006	0.0137	0.0003	376	89	269	8	261	4	274	6
C30	178	295	0.6	0.0528	0.0019	0.297	0.01	0.0412	0.0006	0.0127	0.0003	320	80	264	8	260	4	255	6
SP-01-I	17																		
D1	223	293	0.76	0.0523	0.0012	0.295	0.008	0.0405	0.0005	0.0129	0.0003	302	49	263	6	256	3	258	5
D2	34.7	58.7	0.59	0.0539	0.0028	0.301	0.016	0.0405	0.0007	0.0129	0.0004	365	119	267	13	256	4	258	7
D3	61	102	0.6	0.0531	0.0021	0.3	0.012	0.0408	0.0008	0.0126	0.0003	332	91	267	10	258	5	253	6
D4	125	164	0.76	0.0535	0.0024	0.294	0.015	0.0402	0.0013	0.0127	0.0004	350	97	262	11	254	8	255	8
D5	486	390	1.25	0.0517	0.002	0.286	0.011	0.0407	0.0012	0.0122	0.0003	272	86	255	9	257	8	245	5
D6	536	607	0.88	0.0516	0.0018	0.299	0.01	0.0418	0.0006	0.0123	0.0003	333	80	266	8	264	4	248	6
D7	253	271	0.94	0.052	0.0023	0.299	0.013	0.0419	0.0007	0.0127	0.0003	283	97	265	10	265	4	256	6
D8	121	145	0.84	0.0525	0.0031	0.297	0.018	0.0411	0.0008	0.0131	0.0004	309	135	264	14	259	5	262	8
D9	48.3	77.8	0.62	0.0551	0.0057	0.306	0.03	0.0408	0.001	0.013	0.0006	417	231	271	23	258	6	262	13
D10	80.4	121	0.67	0.0541	0.0034	0.311	0.019	0.0414	0.0007	0.0146	0.0005	376	141	275	15	262	4	294	10
D11	49.6	84.7	0.59	0.0534	0.004	0.305	0.024	0.0409	0.0007	0.0138	0.0007	346	170	270	19	259	5	277	13
D12	57.6	84.6	0.68	0.0517	0.0035	0.291	0.018	0.0422	0.0009	0.0134	0.0005	272	156	260	14	267	5	268	10
D13	157	206	0.76	0.0529	0.0027	0.297	0.015	0.041	0.0007	0.013	0.0004	324	112	264	11	259	4	262	7
D14	65.3	156	0.42	0.0536	0.0031	0.299	0.017	0.0405	0.0007	0.0138	0.0005	354	131	266	13	256	4	276	11
D15	202	249	0.81	0.0525	0.0025	0.296	0.015	0.0407	0.0007	0.0136	0.0003	306	109	263	12	257	4	272	6
D16	126	161	0.78	0.0517	0.0026	0.284	0.013	0.0404	0.0006	0.0125	0.0003	272	117	254	10	255	3	251	6
D17	46.6	81.5	0.57	0.0527	0.0047	0.307	0.028	0.0424	0.0013	0.0156	0.0009	322	204	272	22	268	8	312	19

八七	Th	U	Th/U				l	北值						表	面年出	於(Ma)			
分析	10	6		207Pb/206	1	207Pb/23	1	206Pb/23	1	208Pb/23	1	207Pb/20	1	207Pb/23	1	206Pb/23	1	208Pb/23	1
只	10	-0		Pb	lσ	5U	lσ	8U	lσ	2Th	lσ	6Pb	lσ	5U	lσ	8U	lσ	2Th	lσ
SP-01-1	18																		
E1	46.1	113	0.41	0.049	0.0023	0.278	0.014	0.0412	0.0007	0.0126	0.0005	146	111	249	11	260	5	254	9
E2	150	226	0.66	0.0543	0.0029	0.318	0.017	0.0424	0.0008	0.0127	0.0004	383	120	281	13	268	5	256	7
E3	89.2	147	0.61	0.0539	0.0027	0.297	0.015	0.0403	0.0007	0.0125	0.0004	365	110	264	12	255	4	251	7
E4	59.1	108	0.54	0.0549	0.0026	0.314	0.014	0.0422	0.0008	0.0129	0.0004	406	106	277	11	266	5	260	7
E5	70.7	128	0.55	0.0488	0.0026	0.273	0.015	0.0407	0.0006	0.0135	0.0004	200	-71	245	12	257	4	270	8
E6	175	323	0.54	0.0523	0.0017	0.303	0.009	0.0421	0.0006	0.013	0.0002	298	74	269	7	266	4	262	5
E7	191	268	0.71	0.0516	0.0025	0.284	0.014	0.0398	0.0009	0.0121	0.0005	333	118	254	11	252	6	244	10
E8	35.7	67.8	0.53	0.0495	0.0042	0.276	0.023	0.0406	0.0014	0.0122	0.0008	172	194	247	18	256	9	245	15
E9	62.5	105	0.59	0.0532	0.0025	0.298	0.013	0.0413	0.0008	0.0133	0.0004	339	107	265	10	261	5	266	8
E10	124	213	0.58	0.0543	0.0018	0.309	0.01	0.0415	0.0005	0.0133	0.0003	383	74	273	8	262	3	268	5
E11	149	187	0.8	0.0547	0.003	0.316	0.018	0.042	0.0007	0.0127	0.0004	467	124	279	14	265	5	255	7
E12	174	185	0.94	0.0532	0.0025	0.298	0.014	0.0423	0.0013	0.0133	0.0005	345	106	265	11	267	8	266	9
E13	78.7	141	0.56	0.0514	0.0028	0.296	0.016	0.0424	0.0009	0.0136	0.0005	257	131	264	12	268	6	273	10
E14	74.1	108	0.69	0.0536	0.0035	0.292	0.019	0.0402	0.0009	0.0132	0.0004	354	150	260	15	254	6	264	9
E15	691	520	1.33	0.0534	0.0018	0.295	0.011	0.0401	0.0007	0.0126	0.0003	346	44	262	8	253	5	253	5
E16	45.6	85.9	0.53	0.0541	0.0034	0.303	0.019	0.0413	0.001	0.0121	0.0005	372	138	269	15	261	6	244	11
E17	175	247	0.71	0.0513	0.0017	0.311	0.01	0.0442	0.0006	0.0143	0.0003	257	78	275	8	279	4	286	5
E18	139	169	0.82	0.0535	0.0026	0.295	0.016	0.0396	0.0007	0.0125	0.0003	350	111	262	12	250	4	251	7
E19	60.7	107	0.57	0.0516	0.003	0.305	0.018	0.043	0.001	0.0142	0.0005	333	133	270	14	272	6	286	10
E20	77.1	110	0.7	0.0545	0.0034	0.316	0.019	0.0428	0.0008	0.0138	0.0005	391	143	279	14	270	5	276	10
E21	227	208	1.09	0.0533	0.0025	0.318	0.014	0.0439	0.0009	0.013	0.0003	343	112	280	11	277	6	261	7
E22	133	204	0.65	0.0489	0.0027	0.292	0.016	0.0434	0.001	0.0132	0.0004	143	128	260	12	274	6	265	8

八七	Th	U	Th/U				l	北值						表	面年出	泠(Ma)			
万仞	10	<b>)-</b> 6		207Pb/206	1 -	207Pb/23	1 -	206Pb/23	1 -	208Pb/23	1 -	207Pb/20	1 -	207Pb/23	1 -	206Pb/23	1 -	208Pb/23	1 -
尽	П	) ~		Pb	10	5U	10	8U	10	2Th	10	6Pb	10	5U	10	8U	10	2Th	10
E23	94.9	162	0.59	0.0541	0.0027	0.295	0.015	0.0396	0.0006	0.0122	0.0003	376	113	263	12	250	4	245	7
E24	96.5	134	0.72	0.0491	0.003	0.268	0.017	0.0395	0.0008	0.0125	0.0004	154	-56	241	13	250	5	251	8
E25	489	396	1.23	0.0528	0.002	0.291	0.011	0.0399	0.0006	0.0115	0.0002	317	118	260	9	252	4	231	5
E26	43.2	90.3	0.48	0.0544	0.0028	0.292	0.015	0.0394	0.0008	0.012	0.0004	387	117	260	12	249	5	241	8
SP-0	1-H2																		
F1	315	571	0.55	0.1038	0.0015	3.616	0.103	0.2513	0.006	0.0653	0.0015	1694	27	1553	23	1445	31	1278	28
F2	240	386	0.62	0.0621	0.0016	0.603	0.013	0.071	0.001	0.0235	0.0004	676	56	479	8	442	6	470	8
F3	25	1132	0.02	0.1148	0.0018	4.578	0.083	0.2881	0.0034	0.2642	0.0084	1877	28	1745	15	1632	17	4739	135
F4	128	130	0.99	0.1576	0.0034	8.904	0.219	0.407	0.0054	0.1317	0.0031	2431	36	2328	23	2201	25	2501	56
F5	157	278	0.57	0.0516	0.0023	0.287	0.013	0.04	0.0006	0.0131	0.0004	333	100	256	10	253	4	262	8
F6	92.1	533	0.17	0.112	0.0026	4.649	0.119	0.3	0.0054	0.1056	0.004	1832	41	1758	21	1691	27	2029	74
F7	41.1	50.4	0.82	0.1109	0.0033	5.52	0.186	0.3588	0.0063	0.1007	0.0025	1815	86	1904	29	1977	30	1939	47
F8	211	229	0.92	0.0535	0.0028	0.298	0.015	0.0405	0.0007	0.0124	0.0004	350	119	265	12	256	4	250	8
F9	239	359	0.67	0.0594	0.0019	0.537	0.017	0.0657	0.0008	0.0211	0.0004	589	70	436	11	410	5	422	9
SP01-H	6																		
H01	166	170	0.97	0.0685	0.0017	1.311	0.034	0.1387	0.0019	0.0416	0.0008	883	84	851	15	837	11	823	16
H02	81.8	160	0.51	0.067	0.0018	1.332	0.037	0.1449	0.0021	0.0432	0.0009	839	58	860	16	872	12	854	18
H03	146	227	0.64	0.0673	0.0014	1.293	0.032	0.1391	0.002	0.0401	0.0009	856	-150	843	14	840	11	795	17
H04	116	204	0.57	0.0675	0.0017	1.244	0.032	0.1335	0.0018	0.0412	0.0009	854	-147	821	15	808	10	815	17
H05	109	138	0.79	0.0676	0.0016	1.446	0.038	0.1542	0.002	0.0456	0.0008	857	50	908	16	925	11	902	15
H06	71.4	275	0.26	0.0701	0.0014	1.387	0.029	0.1428	0.0015	0.046	0.0009	931	42	884	13	861	8	910	17
H07	50.4	94	0.54	0.0499	0.0025	0.286	0.014	0.0419	0.0007	0.013	0.0004	191	114	255	11	264	4	262	8
H08	111	170	0.65	0.0673	0.0014	1.272	0.027	0.1367	0.0019	0.0397	0.0007	856	48	833	12	826	11	788	14

八七	Th	U	Th/U				ł	北值						表ī	面年出	泠(Ma)			
万切	10	<b>)-</b> 6		207Pb/206	1 -	207Pb/23	1_	206Pb/23	1 -	208Pb/23	1 -	207Pb/20	1 -	207Pb/23	1-	206Pb/23	1_	208Pb/23	1 -
凤	10	) °		Pb	10	5U	10	8U	10	2Th	10	6Pb	16	5U	10	8U	10	2Th	10
H09	216	296	0.73	0.068	0.0017	1.353	0.032	0.144	0.0019	0.0417	0.0007	878	52	869	14	867	10	825	14
H10	129	269	0.48	0.0661	0.0013	1.27	0.028	0.139	0.002	0.0408	0.0008	809	41	832	12	839	11	807	16
H11	64	394	0.16	0.067	0.0012	1.265	0.024	0.1363	0.0016	0.0414	0.0008	839	-162	830	11	824	9	820	16
H12	62.4	359	0.17	0.0848	0.0015	2.125	0.037	0.1811	0.0019	0.0686	0.0013	1322	34	1157	12	1073	10	1342	24
H13	155	631	0.24	0.0664	0.0011	1.297	0.025	0.1412	0.0016	0.0472	0.0009	820	35	845	11	851	9	933	18
H14	114	467	0.24	0.0662	0.0013	1.364	0.03	0.1491	0.002	0.0451	0.001	813	41	874	13	896	11	891	19
H15	50.8	228	0.22	0.0684	0.0018	1.327	0.037	0.1407	0.002	0.0454	0.0011	880	49	857	16	848	12	898	21
H16	268	254	1.06	0.0528	0.0023	0.155	0.007	0.0215	0.0004	0.0065	0.0002	320	98	147	6	137	2	130	3
H17	39.8	30.3	1.31	0.0766	0.003	2.021	0.081	0.1923	0.0032	0.0605	0.0016	1111	78	1123	27	1134	17	1187	30
H18	166	396	0.42	0.0665	0.0014	1.264	0.029	0.1377	0.0017	0.0414	0.0008	820	44	830	13	832	10	820	16
H19	104	119	0.87	0.0652	0.0016	1.256	0.03	0.1403	0.0019	0.0435	0.0009	789	51	826	13	846	11	860	17
SP-01-1	H1																		
I01	49.8	218	0.23	0.1047	0.002	4.379	0.1	0.3026	0.0047	0.0889	0.0022	1709	35	1708	19	1704	23	1722	41
I02	68.8	140	0.49	0.2572	0.0045	22.385	0.458	0.6298	0.0084	0.161	0.0028	3231	27	3201	20	3148	33	3017	49
103	108	89.6	1.2	0.0677	0.0024	1.068	0.037	0.1152	0.0016	0.0344	0.0007	859	74	738	18	702	9	684	13
I04	74.5	367	0.2	0.1146	0.0019	5.198	0.117	0.3284	0.0058	0.0942	0.0022	1874	29	1852	19	1830	28	1820	40
105	155	226	0.68	0.0955	0.0015	3.592	0.077	0.2721	0.0041	0.0828	0.0014	1539	31	1548	17	1551	21	1608	27
I06	84.3	192	0.44	0.0764	0.0014	1.784	0.039	0.169	0.0024	0.0545	0.001	1106	37	1039	14	1006	13	1073	20
I07	118	418	0.28	0.11	0.0016	4.858	0.079	0.3196	0.0036	0.0926	0.0016	1800	26	1795	14	1787	18	1789	29
I08	52.1	742	0.07	0.1009	0.0016	3.526	0.076	0.2532	0.0045	0.0573	0.0015	1643	28	1533	17	1454	23	1127	28
I09	153	363	0.42	0.1848	0.0027	12.456	0.216	0.4882	0.0063	0.1349	0.0025	2698	24	2639	16	2562	27	2557	44
I10	97.9	81.5	1.2	0.1956	0.0034	13.497	0.313	0.4985	0.0081	0.1426	0.0025	2791	28	2715	22	2607	35	2694	45
I11	235	351	0.67	0.0983	0.0017	3.843	0.073	0.2834	0.004	0.0847	0.0016	1592	36	1602	15	1608	20	1644	29

第3章 物源特征研究

八七	Th	U	Th/U				ŀ	北值						表	面年出	龄(Ma)			
分析	10	<b>)-</b> 6		207Pb/206	1-	207Pb/23	1_	206Pb/23	1-	208Pb/23	1-	207Pb/20	1-	207Pb/23	1-	206Pb/23	1-	208Pb/23	1-
	П	) ~		Pb	10	5U	10	8U	10	2Th	10	6Pb	10	5U	10	8U	10	2Th	10
I12	67	323	0.21	0.1038	0.0016	4.461	0.094	0.3109	0.005	0.0853	0.0017	1694	28	1724	17	1745	24	1655	32
I13	215	423	0.51	0.0746	0.0011	1.851	0.039	0.18	0.0031	0.0539	0.0011	1057	30	1064	14	1066	17	1062	22
I14	312	623	0.5	0.1586	0.0021	9.033	0.159	0.4128	0.0062	0.1157	0.0017	2443	22	2341	16	2227	29	2212	30
I15	31.4	144	0.22	0.0938	0.0017	3.817	0.087	0.2955	0.0057	0.0807	0.0018	1506	33	1596	18	1668	28	1568	33
I16	114	303	0.37	0.1103	0.0019	4.575	0.096	0.3015	0.0055	0.088	0.002	1806	31	1745	18	1698	27	1704	37
I17	46.1	96.9	0.48	0.0573	0.0029	0.341	0.016	0.044	0.0008	0.0136	0.0005	506	111	298	12	277	5	273	9
I18	44	99.3	0.44	0.0596	0.0048	0.343	0.025	0.0441	0.0015	0.0135	0.0006	591	181	300	19	277	9	272	12

## 3.3.3 锆石微区稀土元素特征研究

锆石测量点的微区稀土元素组成见表 3-4:

1、两件玄武岩和3件不同地区典型矿石样品锆石的球粒陨石^[57],标准化稀 土元素配分模式图特征相似(图 3-19-图 3-23)。

2、锆石的稀土元素含量总量∑REE 都较高: SP-01-H8 中,锆石∑REE 一般
1447-7387×10⁻⁶,平均 2974×10⁻⁶; SP-01-H7 中,锆石∑REE 一般 1147-5480×10⁻⁶, 平均 2734×10⁻⁶; SMZD01-H8 中,锆石∑REE 一般 1378-4407×10⁻⁶,平均
2659×10⁻⁶; TC16H4D 中,锆石∑REE 一般 1421-4301×10⁻⁶,平均 2702×10⁻⁶;
QMG02-H4 中,锆石∑REE 一般 1364-4669×10⁻⁶,平均 2572×10⁻⁶。

3、配分曲线表现为相对富集 HREE,相应的 La_N/Yb_N 比值分别为:
0.0002~0.217 (SP-01-H8)、0.00002~0.13007(SP-01-H7)、0.00001~0.00935
(SMZD01-H8)、0.00002~0.0812(TC16H4D)、0.00002~0.01403(QMG02-H4)。

4、锆石具明显正 Ce 和负 Eu 异常,绝大多数锆石的 Ce/Ce*分别为 0. 1.15~55.7 (SP-01-H8)、1.3~66.8(SP-01-H7)、2.5~61.1(SMZD01-H8)、 1.2~52.7(TC16H4D)、2.09~78.1(QMG02-H4), Eu/Eu*分别为 0.06~0.17 (SP-01-H8)、0.06~0.19(SP-01-H7)、0.08~0.10(SMZD01-H8)、0.07~0.12 (TC16H4D)、0.02~0.018(QMG02-H4)。

5、五件样品中,都存在有少数锆石分析测试点,LREE 含量较高(如: E10、 E18、D15),这是由于在剥蚀过程中,锆石中混入富含 LREE 的磷灰石等矿物 包裹体有关。

综合上述,2件玄武岩和3件典型矿石样品中的锆石,具有相似的稀土配分 模式图特征,且与典型岩浆成因锆石稀土特征相符,表明这些锆石具有相同或 相似的源区,进一步证实峨眉山玄武岩为古风化-沉积型稀土多金属矿床提供物 源。



图 3-20 贵州西部玄武岩样品 SP-01-H7 锆石稀土元素配分模式图 标准化数据据 Sun 等^[57]



图 3-21 贵州西部玄武岩样品 QMG02-H4 锆石稀土元素配分模式图标准化数据据 Sun 等^[57]



标准化数据据 Sun 等[57]



图 3-23 贵州西部玄武岩样品 SMZD01-H8 锆石稀土元素配分模式图标准化数据据 Sun 等^[57]

分析点	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	ΣREE	$La_N\!/Yb_N$	δEu	δCe
SP-01-H8	8																		
E1	3.39	25.3	1.07	6.52	4.65	0.36	21.9	7.18	87.8	31.1	140	26.5	266	42.9	962	1627	0.00914	0.09	3.24
E2	39.1	119	13.1	62.9	20.9	1.19	61.9	18.7	217	73.9	309	55.0	509	77.2	2200	3777	0.05504	0.09	1.28
E3	0.03	29.0	0.15	2.54	4.51	0.31	27.0	9.77	122	44.0	195	36.6	348	53.2	1363	2235	0.00006	0.07	55.7
E4	0.20	25.2	0.79	9.12	12.4	0.75	53.7	16.9	190	66.5	285	51.8	505	81.5	2029	3328	0.00029	0.08	8.94
E5	0.22	16.5	0.30	3.95	5.13	0.44	25.2	7.95	96	34.0	151	28.2	278	44.4	1064	1755	0.00056	0.10	13.2
E6	0.33	16.7	0.39	5.18	7.62	0.52	33.9	10.6	125	42.9	188	34.9	333	52.9	1346	2197	0.00072	0.08	9.81
E7	0.72	29.1	0.70	10.2	13.7	0.86	57.4	17.5	197	66.3	281	50.5	485	78.2	2014	3302	0.00106	0.08	9.14
E8	0.14	30.8	0.90	8.78	11.6	0.82	53.6	17.5	202	69.3	301	53.9	517	79.1	2130	3476	0.00019	0.08	10.0
E9	56.1	157	16.5	81.8	23.7	1.12	62.2	18.1	195	65.6	278	49.8	472	73.3	1980	3531	0.08525	0.08	1.25
E10	83.4	220	25.8	118	28.4	0.93	43.3	11.1	116	40.0	174	31.5	308	47.0	1228	2476	0.19444	0.08	1.15
E11	29.6	103	9.36	46.3	14.0	0.68	42.3	13.7	164	57.2	249	45.5	427	64.6	1741	3007	0.04980	0.08	1.51
E12	4.08	23.9	1.41	9.19	8.79	0.44	36.1	11.5	131	46.7	201	36.9	360	56.8	1422	2350	0.00812	0.07	2.44
E13	3.18	31.3	1.42	9.01	8.06	0.59	36.5	12.2	149	53.8	239	43.6	410	62.8	1655	2715	0.00557	0.09	3.61
E14	2.76	86.5	1.07	15.1	25.3	1.47	121	39.1	448	152	638	112	1045	159	4541	7387	0.00189	0.07	12.3
E15	7.34	32.0	2.52	11.2	5.09	0.26	20.2	6.60	77.0	27.7	124	23.9	240	38.4	874	1490	0.02199	0.07	1.82
E16	10.0	45.6	3.34	18.6	11.4	0.71	46.5	14.5	165	57.5	244	44.4	421	66.5	1724	2873	0.01708	0.08	1.92
E17	0.87	76.3	0.82	11.6	17.3	0.97	86.5	27.9	308	104	439	77.9	728	111	3104	5094	0.00086	0.06	20.2
E18	32.5	91.6	10.6	47.1	12.4	0.59	26.6	7.60	84.2	28.6	125	22.9	224	35.6	886	1635	0.10408	0.10	1.20
E19	0.00	12.5	0.07	1.39	3.25	0.29	18.7	6.61	81.5	29.0	129	23.5	235	35.8	925	1502	0.00001	0.09	54.4
E20	20.7	79.0	7.39	38.5	16.0	0.89	48.8	15.5	177	61.9	272	47.8	467	70.9	1960	3284	0.03173	0.09	1.56
E21	0.06	16.3	0.34	5.30	8.08	0.64	37.2	11.3	133	46.5	207	38.7	393	62.8	1524	2483	0.00010	0.09	14.0
E22	0.01	19.0	0.16	2.61	5.07	0.32	23.5	7.52	90.8	32.3	145	27.6	277	43.3	1041	1716	0.00002	0.08	36.2
E23	0.16	17.5	0.30	5.39	8.70	0.56	39.9	13.1	152	53.0	230	42.3	417	63.2	1672	2716	0.00027	0.08	14.9
E24	3.17	43.8	1.39	9.93	13.4	0.71	70.2	24.6	301	103	454	81.2	777	112	3261	5257	0.00292	0.06	5.11
E25	42.6	135	12.7	60.8	22.3	1.20	70.9	22.0	255	87.5	380	67.3	649	95.0	2761	4661	0.04711	0.08	1.40
E26	0.31	9.14	0.26	3.01	4.36	0.66	22.0	6.92	79.1	27.3	120	22.1	227	34.8	890	1447	0.00098	0.17	7.47
SP-01-H7	7																		
D1	0.01	41.5	0.19	2.62	7.23	0.39	40.7	15.3	190	69.2	298	54.7	509	75.9	2015	3320	0.00002	0.06	66.8
D2	0.38	11.4	0.18	2.31	3.23	0.24	16.3	5.36	64.1	23.0	100	18.8	192	30.9	679	1147	0.00142	0.08	10.8
D3	1.70	19.4	0.63	4.33	4.30	0.27	21.0	7.23	87.7	32.5	144	27.4	269	42.4	957	1620	0.00452	0.07	4.61
D4	0.45	23.8	0.40	4.66	7.73	0.55	43.6	14.8	178	63.0	267	49.1	465	70.3	1837	3025	0.00069	0.07	12.7
D5	0.05	49.2	0.38	6.58	11.3	0.69	64.3	21.4	249	85.4	364	66.7	609	95	2500	4122	0.00006	0.06	38.0
D6	0.92	57.3	2.78	2.90	2.94	0.51	14.9	5.44	79.2	33.5	182	43.6	501	95.2	1211	2233	0.00132	0.19	5.65
D7	90.3	270	27.6	127	37.0	1.74	98.7	28.3	307	105	434	77.6	723	110	3042	5480	0.08960	0.08	1.30
D8	13.0	50.1	4.22	25.6	14.9	1.09	63.7	18.5	211	73.4	308	55.8	538	87.2	2132	3596	0.01735	0.09	1.60
D9	0.14	13.5	0.22	3.01	5.15	0.48	29.3	8.94	103	36.3	153	28.0	264	42.3	1069	1756	0.00037	0.09	15.28
D10	0.13	17.5	0.34	4.46	7.91	0.56	33.3	10.7	120	42.4	185	35.5	353	59.3	1275	2145	0.00026	0.09	13.8

表 3-4 贵州西部玄武岩和典型矿石锆石稀土元素组成(10-6)

分析点	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	ΣREE	$La_N\!/Yb_N$	δEu	δCe
D11	0.21	17.0	0.23	2.76	4.02	0.30	19.5	6.54	77.3	28.3	126	24.0	240	39.3	849	1434	0.00062	0.09	16.7
D12	0.02	18.9	0.16	2.79	4.55	0.32	21.7	6.98	81.4	28.7	127	23.8	242	38.7	864	1461	0.00004	0.08	35.8
D13	36.2	120	11.1	53.0	17.5	0.90	57.2	18.0	211	75.0	322	58.0	539	81.4	2166	3765	0.04822	0.08	1.45
D14	0.07	14.7	0.28	3.33	6.59	0.43	37.9	13.5	163	57.6	248	45.3	421	66.0	1671	2749	0.00011	0.07	14.8
D15	115	350	38.6	175	46.2	1.86	89.9	25.4	273	91.4	383	69.3	636	96.5	2679	5071	0.13007	0.09	1.30
D16	0.82	28.7	0.60	5.48	6.08	0.37	27.3	9.21	112	40.2	175	33.1	327	50.9	1197	2014	0.00180	0.07	9.57
D17	1.71	18.5	0.60	4.89	5.16	0.40	23.4	7.27	86.5	30.7	134	24.9	253	40.6	918	1551	0.00485	0.09	4.50
SMZD01	-H8																		
B1	1.57	14.6	0.57	5.81	7.90	0.50	34.4	10.0	112	37.3	157	28.3	283	45.9	1139	1878	0.00397	0.1	3.80
B2	0.34	13.4	0.34	3.74	6.68	0.41	34.9	11.5	136	47.6	202	35.9	344	53.2	1459	2349	0.00070	0.1	8.72
В3	0.70	45.7	0.42	6.93	10.6	0.63	57.5	18.9	221	76.3	325	57.9	574	85.0	2368	3848	0.00087	0.1	20.40
B4	0.52	21.5	1.00	12.7	17.6	1.18	76.0	21.3	228	75.3	304	52.8	513	82.0	2262	3669	0.00072	0.1	5.6
В5	1.40	16.3	0.61	4.33	6.13	0.33	30.8	9.30	108	37.6	162	29.6	293	47.7	1165	1912	0.00343	0.1	4.31
B6	0.10	13.6	0.14	2.40	4.26	0.33	20.8	6.71	79.0	28.7	127	23.8	244	39.1	904	1494	0.00030	0.1	23.3
B7	3.96	23.6	1.33	9.14	8.11	0.48	32.0	9.70	109	37.7	163	30.0	304	48.4	1164	1944	0.00935	0.1	2.50
B8	0.80	15.8	0.33	3.91	7.11	0.57	38.6	13.3	165	58.2	255	45.9	430	65.3	1808	2907	0.00133	0.1	7.50
B9	0.02	15.7	0.10	1.63	3.18	0.23	17.9	6.01	73.7	26.6	120	23.2	234	38.5	847	1408	0.00006	0.1	45.1
B10	0.03	19.8	0.83	4.01	8.54	0.65	52.4	18.0	230	81.0	353	62.3	579	84.8	2467	3961	0.00004	0.1	7.30
B11	0.24	18.6	0.29	4.45	7.94	0.65	42.1	13.9	172	60.1	261	46.4	440	66.1	1853	2987	0.00040	0.1	14.9
B12	0.03	20.9	0.22	4.15	6.40	0.43	31.5	10.1	123	43.9	194	36.4	372	58.4	1411	2311	0.00006	0.1	28.4
B13	0.01	16.0	0.12	2.46	5.25	0.45	30.1	10.4	126	45.0	195	35.2	337	51.6	1388	2243	0.00002	0.1	39.1
B14	0.01	24.6	0.15	2.77	7.43	0.60	44.1	16.3	204	72.7	319	57.1	535	78.7	2247	3609	0.00001	0.1	48.5
B15	0.05	28.7	0.40	6.25	8.85	0.55	40.3	12.6	150	51.9	233	44.5	460	74.6	1692	2803	0.00008	0.1	21.2
B16	0.15	15.6	0.15	2.60	4.80	0.42	25.4	8.45	104	35.6	156	28.9	280	43.8	1126	1831	0.00038	0.1	23.6
B17	1.18	36.3	0.53	4.97	6.94	0.38	37.9	14.0	173	61.7	274	50.6	481	70.5	1956	3169	0.00177	0.1	11.2
B18	0.23	18.7	0.22	3.07	7.05	0.51	39.2	14.3	176	62.0	273	49.8	472	69.4	1945	3130	0.00035	0.1	18.7
B19	1.11	19.4	0.44	3.98	5.40	0.35	27.3	9.09	110	38.6	165	30.3	300	45.9	1184	1940	0.00267	0.1	6.80
B20	0.02	32.1	0.16	2.59	6.06	0.43	34.7	12.6	160	57.9	254	48.2	454	68.4	1817	2948	0.00003	0.1	61.1
B21	0.13	29.6	0.34	4.72	8.61	0.48	44.1	14.8	181	64.5	285	51.9	513	78.5	2041	3318	0.00018	0.1	23.7
B22	0.09	27.4	0.11	2.08	5.06	0.42	32.7	11.9	150	54.1	242	43.7	419	62.1	1678	2730	0.00016	0.1	59.2
B23	0.09	11.2	0.31	4.92	7.22	0.57	28.7	8.55	94.5	31.5	137	24.5	251	39.7	980	1619	0.00026	0.1	10.1
B24	0.02	19.8	0.11	1.95	4.11	0.35	24.8	9.09	116	41.9	188	35.0	340	51.3	1320	2152	0.00005	0.1	51.7
B25	0.10	13.4	0.11	2.26	3.97	0.25	20.8	6.45	76.6	26.5	116	21.6	219	34.7	836	1378	0.00032	0.1	28.6
B26	0.13	23.6	0.55	7.89	15.0	1.46	77.2	23.8	272	90.3	374	63.9	598	89.9	2769	4407	0.00015	0.1	12.2
B27	0.42	15.2	0.20	2.47	4.46	0.35	23.0	7.70	92.7	33.7	147	27.3	264	40.8	1051	1710	0.00115	0.1	12.8
B28	0.03	27.0	0.17	3.63	8.27	0.69	52.0	19.2	246	88.7	385	68.1	638	93.7	2676	4307	0.00003	0.1	45.9
B29	0.01	14.7	0.10	1.88	4.15	0.30	22.2	7.43	90.5	31.8	138	24.7	246	37.6	970	1589	0.00004	0.1	42.4
B30	0.83	26.5	0.50	5.33	10.0	0.86	56.6	19.8	247	86.8	369	64.8	603	89.4	2636	4216	0.00099	0.1	9.84

分析点	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	ΣREE	$La_N\!/Yb_N$	δEu	δCe
TC16H4	D																		
C1	0.03	14.5	0.29	4.53	7.69	0.58	33.4	10.1	114	38.0	165	29.7	293	47.6	1193	1951	0.00008	0.09	15.1
C2	0.02	11.9	0.10	2.05	4.01	0.29	20.2	6.60	79.6	27.7	123	22.6	226	35.8	872	3793	0.00005	0.08	33.2
C3	0.02	14.9	0.30	5.04	10.1	0.76	51.3	17.2	204	71.5	308	54.1	506	76.8	2206	2962	0.00002	0.08	15.2
C4	8.62	34.1	2.77	15.8	8.74	0.53	27.7	7.33	81.9	27.2	112	21.0	212	34.8	828	3636	0.02922	0.10	1.7
C5	0.13	27.4	0.20	3.28	7.14	0.61	42.1	14.5	177	63.1	272	48.2	454	67.1	1905	2116	0.00021	0.08	33.8
C6	0.02	17.7	0.20	3.10	6.64	0.56	35.4	12.1	145	51.4	229	40.8	396	61.0	1623	3259	0.00003	0.09	26.5
C7	2.03	21.3	0.75	4.77	4.51	0.37	21.6	7.43	91.9	33.4	153	29.5	294	46.2	1086	1478	0.00496	0.10	4.25
C8	12.5	41.6	3.96	18.8	7.18	0.47	22.9	6.99	79.0	27.3	118	21.8	218	35.3	863	2358	0.04118	0.10	1.44
С9	0.03	16.6	0.37	5.67	11.0	0.70	55.8	17.6	206	70.8	296	52.2	493	74.7	2170	1966	0.00005	0.07	13.3
C10	47.7	127	13.6	64.3	18.0	0.90	47.4	13.6	152	52.7	231	42.8	422	67.2	1663	4301	0.08120	0.09	1.20
C11	0.12	20.1	0.51	7.92	15.1	1.18	74.6	23.5	266	89.3	366	63.2	592	88.4	2688	3526	0.00015	0.09	11.1
C12	15.3	50.6	4.92	24.6	10.4	0.65	33.7	9.89	108	37.2	159	28.4	278	44.0	1162	1692	0.03959	0.10	1.40
C13	48.7	144	16.4	78.9	27.1	1.34	72.6	21.4	246	82.4	349	60.8	562	83.4	2508	1431	0.06219	0.09	1.20
C14	0.14	12.6	0.38	5.77	8.30	0.64	36.7	11.0	124	41.9	176	31.8	310	49.1	1308	2923	0.00032	0.09	8.93
C15	0.99	14.9	0.51	4.77	6.96	0.53	30.6	9.31	103	35.7	148	27.2	269	43.8	1068	3893	0.00264	0.09	5.10
C16	41.8	121	14.5	66.9	21.2	1.10	51.9	14.9	174	60.0	260	46.9	446	67.0	1872	1797	0.06720	0.10	1.20
C17	0.10	15.1	0.14	2.59	6.08	0.50	33.4	11.4	137	47.8	208	37.5	357	54.3	1476	2265	0.00021	0.09	26.1
C18	0.10	16.6	0.21	3.52	6.62	0.66	31.4	10.7	128	45.0	196	35.7	347	52.0	1392	2400	0.00020	0.12	20.7
C19	0.22	16.0	0.46	6.22	11.5	0.91	61.2	20.7	251	88.8	374	65.3	601	88.9	2663	1423	0.00026	0.08	9.1
C20	0.18	17.0	0.30	4.33	7.43	0.63	36.0	11.8	139	48.9	208	37.3	352	54.2	1484	2387	0.00037	0.10	14.1
C21	0.12	30.1	0.16	2.50	6.01	0.54	36.9	13.4	166	59.2	259	46.1	438	63.5	1802	1764	0.00019	0.09	44.2
C22	0.04	12.7	0.14	3.16	5.25	0.42	26.4	8.35	96.2	33.2	143	26.3	255	39.8	1041	1421	0.00012	0.09	24.8
C23	0.02	11.5	0.08	2.02	4.04	0.35	20.6	6.60	80.5	28.9	125	23.4	235	37.2	902	3469	0.00007	0.09	39.0
C24	0.06	25.1	0.18	3.25	7.76	0.66	48.5	17.6	221	78.8	345	61.4	577	83.3	2423	3081	0.00007	0.08	38.5
C25	3.63	20.2	1.20	7.42	5.44	0.43	23.8	7.02	79.2	27.5	118	21.4	216	34.9	854	3682	0.01204	0.10	2.35
C26	0.05	13.9	0.48	7.34	10.1	0.78	44.2	12.7	143	47.3	197	34.9	339	54.5	1453	4250	0.00010	0.10	8.60
C27	0.02	17.2	0.21	3.89	8.56	0.75	46.7	16.5	207	72.9	319	56.9	520	78.6	2288	3470	0.00002	0.09	25.1
C28	0.01	27.1	0.16	2.73	7.35	0.66	43.2	15.9	197	70.2	306	55.3	517	75.8	2151	4296	0.00002	0.09	52.7
C29	0.09	21.1	0.23	4.87	9.19	0.75	48.9	17.2	213	75.1	321	57.5	527	78.2	2307	1478	0.00012	0.09	24.4
C30	10.1	51.4	3.19	17.7	10.6	0.80	50.1	16.9	213	75.6	328	58.8	544	81.4	2331	2621	0.01332	0.09	2.2
QMG02-	H4																		
A1	0.01	14.2	0.06	1.60	3.65	0.31	19.9	6.97	85.8	30.8	139	25.6	251	39.1	960	1578	0.00002	0.09	71.9
A2	0.02	12.8	0.18	2.82	4.44	0.40	21.8	6.56	76.1	26.4	115	21.4	216	35.3	825	1364	0.00005	0.10	21.4
A3	0.11	14.2	0.11	1.73	4.28	0.34	23.1	7.62	94.8	33.2	148	27.4	266	41.0	1034	1696	0.00031	0.08	28.4
A4	2.16	21.9	1.18	12.2	13.6	0.99	58.3	16.4	178	58.1	243	42.6	411	66.6	1778	2904	0.00377	0.09	3.32
A5	0.01	16.6	0.13	2.18	4.24	0.34	25.1	8.57	107	38.5	173	31.8	308	48.0	1208	1971	0.00002	0.08	39.4
A6	0.44	27.8	1.19	16.9	23.6	1.95	96.4	26.8	290	92.6	377	65.2	629	97.6	2829	4576	0.00050	0.11	6.31
A7	0.13	20.5	0.10	2.08	4.68	0.43	26.6	9.33	115	41.3	188	34.1	333	50.3	1329	2155	0.00028	0.09	41.3

第3章 物源特征研究

分析点	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	ΣREE	La _N /Yb _N	δEu	δCe
A8	3.97	43.0	1.93	14.7	15.3	0.90	71.4	23.1	271	92.9	398	70.8	683	103	2876	4669	0.00417	0.07	3.80
A9	0.23	16.0	0.36	4.80	8.83	0.60	46.3	15.3	181	61.7	260	45.4	422	63.4	1860	2987	0.00039	0.07	10.9
A10	1.08	21.8	0.41	4.15	6.33	1.11	34.2	11.2	140	52.5	246	49.4	539	95.8	1748	2951	0.00144	0.18	7.97
A11	0.45	15.1	0.27	3.95	6.93	0.47	33.4	10.8	130	44.7	191	33.8	326	48.6	1368	2213	0.00099	0.08	10.4
A12	0.33	19.5	0.45	4.40	6.90	0.59	39.4	13.0	159	56.5	243	42.9	414	60.9	1692	2753	0.00057	0.09	10.4
A13	0.70	14.4	0.32	3.63	5.34	0.35	26.6	9.03	107	38.8	169	31.3	300	46.9	1199	1954	0.00168	0.07	7.41
A14	0.39	32.3	0.41	5.13	7.81	0.17	39.6	12.6	151	55.4	243	46.6	483	78.5	1759	2915	0.00057	0.02	17.8
A15	0.05	15.6	0.26	2.99	5.85	0.41	31.6	11.0	134	46.9	207	37.1	373	53.9	1477	2396	0.00010	0.07	17.6
A16	0.14	14.2	0.20	3.80	7.06	0.45	34.5	11.3	135	47.0	203	36.8	352	54.1	1458	2358	0.00029	0.07	17.3
A17	0.19	12.1	0.16	2.23	3.69	0.36	21.6	7.49	93.2	33.2	146	27.1	268	41.0	1020	1676	0.00051	0.09	16.3
A18	0.54	14.2	0.28	4.23	6.65	0.40	30.3	9.59	112	37.3	161	29.2	286	44.3	1174	1909	0.00136	0.07	8.78
A19	0.12	15.9	0.18	2.99	6.06	0.47	31.8	10.3	123	42.4	181	32.5	316	48.8	1329	2141	0.00027	0.08	22.0
A20	0.12	30.1	0.18	3.48	9.00	0.80	56.9	20.3	258	90.7	392	69.8	652	94.6	2742	4420	0.00014	0.08	40.0
A21	0.013	12.5	0.14	2.20	4.59	0.27	23.5	7.78	93.5	31.8	141	25.7	253	39.5	998	1634	0.00004	0.06	27.6
A22	0.13	13.9	0.40	6.34	9.24	0.65	39.8	11.2	126	41.6	176	31.4	307	49.1	1298	2111	0.00030	0.09	9.63
A23	0.01	20.7	0.08	1.77	3.73	0.38	18.9	6.73	83.6	30.0	136	26.0	260	40.7	961	1590	0.00002	0.11	78.1
A24	0.95	20.4	0.41	4.16	8.83	0.71	49.6	17.8	224	79.4	352	62.2	589	85.1	2424	3918	0.00116	0.08	8.01
A25	0.38	31.0	0.60	9.09	14.3	1.65	61.9	18.5	204	67.0	283	51.7	507	78.6	2139	3468	0.00054	0.14	12.8
A26	0.17	13.7	0.27	4.54	6.97	0.45	36.2	11.3	131	44.0	187	32.7	322	49.4	1370	2210	0.00037	0.07	12.4
A27	0.21	17.7	0.39	6.07	11.3	0.79	59.9	19.1	225	75.7	316	55.5	525	79.4	2331	3722	0.00029	0.07	11.6
A28	8.75	44.3	3.06	16.6	9.15	0.64	38.2	13.3	165	58.0	258	46.6	448	65.8	1815	2989	0.01403	0.09	2.09
A29	0.19	14.0	0.31	5.45	8.19	0.75	39.4	11.6	130	43.3	183	32.8	320	49.0	1368	2206	0.00043	0.10	11.1
A30	0.46	15.2	0.18	2.40	3.93	0.32	23.2	7.68	93.9	34.0	150	27.7	274	41.3	1072	1746	0.00120	0.08	12.9

## 3.4 Sr、Nd 同位素研究

不同成因的岩浆岩, Sr、Nd 同位素组成往往差异很大。同时, Sr、Nd 同位素在搬运、沉积等地质作用过程的影响相对较小^[58],因而 Sr、Nd 同位素组成是物源示踪研宄中重要的示踪指标。

本文通过采集峨眉山玄武岩组二段到四段的玄武岩及凝灰岩、玄武岩现代 风化剖面及典型矿点剖面(沉积剖面)开展 Sr-Nd 同位素特征研究,进一步探 讨了成矿物质来源。

### 3.4.1 样品和分析方法

一、样品采集

峨眉山玄武岩组二段-四段五亚段 SP01 剖面采样情况见 3.2 节,峨眉山玄武岩风化剖面 16-K 山 5 和峨眉山玄武岩古风化-沉积型稀土多金属矿(化) 层剖面 TC16 分布见图 3-4。

1、通过施工浅井 16-K 山,揭露峨眉山玄武岩现代风化壳,自下而上依次可见:

本文选择贵州赫章某地对峨眉山玄武岩风化壳进行研究,该风化壳厚约数米 至十余米,最厚可达 20 余米,岩性自下而上依次为(图 3-24):

(1) 底部玄武岩半风化层:黄褐色碎块状半风化玄武岩;

(2)中下部风化残积层:黄-黄褐色玄武岩风化残积土层,常见次生黑色钴、 锰质细脉与不规则状结核,厚 6-18 米;

(3)中上部风化亚粘土层:黄-黑褐色粘土层,含灰岩、玄武岩转石块,上 部为黑色腐植土层,常见植物根系,厚0.5-2.0米。岩(矿)石主要为碎状粘土, 矿物组成主要为高岭石,少量锐钛矿、金红石、钛铁矿、磁铁矿、赤铁矿(褐铁 矿)等。

(4) 顶部腐殖土层。



图 3-24 贵州西部某地浅井 16-K 山 5 工程素描图

2、通过施工探槽 TC16,揭露峨眉山玄武岩古风化-沉积型稀土多金属矿 (化)层,自下而上依次可见:

(1) 峨眉山玄武岩组(P₂₋₃em³)

辉绿-灰黑色致密块状玄武岩, 剖面处凝灰岩不发育。

(2)稀土多金属矿(化)层

与下伏地层呈平行不整合接触,与上覆地层呈平行整合接触。 ①灰白色厚层状含豆鲕状铝土矿,厚1.2米,取样TC16H1; ②灰白色中厚层状铝土矿,此层厚度为0.5m,取样TC16H2; ③褐色-灰色薄厚层状铝土岩,此厚度约0.1m,取样TC16H3; ④灰白色中厚层状含豆鲕状铝土矿,厚0.5m,取样TC16H4; ⑤灰黄色硬质粘土岩,厚0.2m,取样TC16H5; ⑥黄绿色硬质粘土岩,厚0.2m,取样TC16H6; ⑦灰黄色硬质粘土岩,厚0.2m,取样TC16H6; ⑨灰白色-灰黄色粘土岩,厚0.3m,取样TC16H7; ⑩黄色硬质粘土岩,厚0.3m,取样TC16H9; ⑪黄色硬质粘土岩,厚0.3m,取样TC16H10; ①灰白色硬质粘土岩,厚0.2m,取样TC16H10;

与下伏地层呈平行整合接触。

灰黑色碳质泥岩夹土黄色-灰白色碎屑岩。

#### 二、样品分析测试

全岩 Sr、Nd 同位素前处理和测试由武汉上谱分析科技有限责任公司完成, 样品前处理在千级超净室完成,采用美国 Thermo Fisher Scientific 公司的 MC-ICP-MS(Neptune Plus)进行 Sr、Nd 同位素分析,使用 BCR-2(玄武岩) 和 RGM-2(流纹岩)作为流程监控标样,测试数据及计算参数见表 3-5。

表 3-5	贵州西部二	_叠系嶋	<b>俄</b> 眉ι	山玄武岩剖面、	玄武岩冈	1化剖面	及沉积音	山面
		Sr.	Nd	同位素组成及	其参数			

类	原始	1* □ 1++,7	Rb	Sr	<u>⁸⁷Sr</u>	2	T	Sm	Nd	<u>143Nd</u>	2	T	(1)
型	样号	样品描述	(10	)-6)	⁸⁶ Sr	2σ	I _{Sr}	(10	)-6)	¹⁴⁴ Nd	2σ	I _{Nd}	ε _{Nd} (t)
					I	1	SP01			I	I		
	H1	玄武岩	58	508	0.707250	0.000006	0.70603	11.7	49.7	0.512503	0.000005	0.512262	-0.81
	H2	玄武岩	102	446	0.770772	0.000007	0.76832	13.3	54.9	0.512562	0.000004	0.512312	0.17
峨	Н3	凝灰岩	595	57	0.729750	0.000009	0.61795	7.50	25.7	0.512587	0.000005	0.512287	-0.32
山玄	H4	凝灰岩	443	134	0.753334	0.000009	0.71793	29.9	129	0.512493	0.000005	0.512254	-0.96
1武	Н5	凝灰岩	407	49	0.715718	0.000008	0.62675	11.7	48.0	0.512629	0.000004	0.512378	1.46
	H6	凝灰岩	138	57	0.706525	0.000005	0.68059	19.4	85.7	0.512555	0.000005	0.512323	0.39
	H7	玄武岩	25	846	0.706108	0.000008	0.70579	14.8	62.6	0.512591	0.000004	0.512348	0.87
	H8	玄武岩	34	380	0.716314	0.000007	0.71536	13.0	54.9	0.512563	0.000007	0.51232	0.33
						1	l6-K山5						
	H1		23	35	0.711201	0.000008	0.70416	16.4	72.0	0.512539	0.000006	0.512304	0.01
	H2		42	28	0.716837	0.00001	0.70077	10.1	32.6	0.512459	0.000006	0.51214	-3.19
	Н3	幺武宕风化	43	28	0.717319	0.00001	0.70087	8.80	36.0	0.512403	0.000008	0.512152	-2.95
	H4	业貓工层	40	26	0.715622	0.000011	0.69914	7.80	31.7	0.51241	0.000007	0.512157	-2.85
	Н5		32	25	0.712045	0.000008	0.69834	7.00	28.3	0.512402	0.000009	0.512146	-3.07
凤	H6		9.88	16	0.730466	0.000007	0.72385	14.3	58.3	0.512538	0.000008	0.512285	-0.36
化	H7	<u> </u>	203	53	0.720708	0.000008	0.67968	57.2	262	0.512613	0.000007	0.512389	1.67
过程	H8	玄武岩风化 残积层	169	52	0.716744	0.000006	0.68193	47.0	197	0.512623	0.000007	0.512378	1.46
	H9	戏帜层	202	47	0.715222	0.000007	0.66919	39.5	157	0.512632	0.000007	0.512373	1.36
	H10		174	62	0.711457	0.000011	0.6814	45.6	191	0.512636	0.000006	0.512391	1.71
	H11		96	116	0.713152	0.000011	0.70429	20.4	80.6	0.512636	0.000007	0.512376	1.42
	H12	弱风化玄	99	81	0.711361	0.00001	0.69827	16.3	61.7	0.512646	0.000007	0.512375	1.40
	H13	武岩	82	119	0.708971	0.000009	0.70159	17.3	64.3	0.512631	0.000008	0.512354	0.99
	H14		61	196	0.706781	0.00001	0.70345	16.1	63.4	0.51262	0.000006	0.512359	1.09
							TC16						
	H1	铝土矿	7.43	156	0.707061	0.00001	0.70655	24.5	145	0.51247	0.000007	0.512296	-0.14
	H2	铝土矿	8.81	83	0.707843	0.000012	0.70671	24.3	125	0.512498	0.000011	0.512298	-0.1
	H3	铝土岩	16	42	0.707000	0.000007	0.70292	26.4	68.6	0.512618	0.000007	0.512221	-1.61
	H4	铝土矿	3.77	57	0.707614	0.000006	0.70691	23.0	76.3	0.512563	0.000006	0.512252	-1.00
沉	Н5	硬质粘土岩	5.24	28	0.707014	0.000007	0.70501	35.3	66.0	0.512732	0.000009	0.512182	-2.37
枳   过	H6	硬质粘土岩	15	114	0.706528	0.000006	0.70512	16.5	76.3	0.512515	0.000006	0.512293	-0.20
程	H7	硬质粘土岩	4.47	147	0.706701	0.000006	0.70638	30.9	111	0.51256	0.000008	0.512272	-0.61
	H8	硬质粘土岩	4.48	260	0.707259	0.000006	0.70707	32.2	172	0.512486	0.000005	0.512293	-0.2
	H9	硬质粘土岩	3.26	139	0.706989	0.000007	0.70674	23.8	90.0	0.512521	0.000006	0.512249	-1.06
	H10	硬质粘土岩	9.37	504	0.707096	0.000008	0.7069	68.7	294	0.512492	0.000005	0.512252	-1.00
	H11	硬质粘土岩	4.6	282	0.707673	0.000007	0.7075	56.2	269	0.512486	0.000006	0.512271	-0.63
	H12	硬质粘土岩	8.57	87	0.707177	0.000008	0.70612	17.0	78.0	0.512493	0.000007	0.512269	-0.67

注: 用于计算 ɛNd(t)的年龄 t = 260 Ma

### 3.4.2 Sr、Nd 同位素特征

#### 1、峨眉山玄武岩 Sr、Nd 同位素特征

(1)玄武岩 Sr 同位素初始值 Isr为 0.70579~0.76832,Nd 同位素初始比值 I_{Nd}为 0.512262 ~ 0.512348,其εNd(t)值为 -0.81 ~ +0.87。其中,H2 和 H8 是玄武质岩浆快速喷发,且通道并不畅,混入大量地壳物质,造成 Sr 同位素初始值较大。

(2)凝灰岩 Sr 同位素初始值 I_{Sr}为 0.61795~0.71793, Nd 同位素初始比值 I_{Nd}为 0.512254~0.512378, 其εNd(t)值为 -0.96~ +1.46。

(3)总体而言,玄武岩和凝灰岩的 Isr存在一定差异,且范围均较大。而 I_{Nd}和εNd(t)范围较窄,与肖龙^[59]、张招崇^[60]、廖宝丽^[42]等对峨眉山玄武岩的 I_{Nd} 和εNd(t)研究成果相近。

#### 2、风化剖面 Sr、Nd 同位素特征

(1)玄武岩风化亚黏土层 Sr 同位素初始值 I_{sr}为 0.69834~0.70416, Nd 同位素初始比值 I_{Nd}为 0.512140 ~ 0.512304,其εNd(t)值为 -3.19 ~ +0.01。

(2)玄武岩风化残积层 Sr 同位素初始值 Isr为 0.66919~0.72385, Nd 同位素初始比值 INd为 0.512285~0.512391,其ɛNd(t)值为-0.36~ +1.71。

(3)弱风化玄武岩 Sr 同位素初始值 Isr为 0.69827~0.70429, Nd 同位素 初始比值 I_{Nd}为 0.512354~0.512376,其εNd(t)值为+0.99~+1.42。

(4)总体而言,随着风化减弱,从弱风化玄武岩→玄武岩风化亚黏土层→ 玄武岩风化残积层,Isr存在总体减弱趋势,INd和εNd(t)表现为玄武岩风化亚黏 土层<弱风化玄武岩<玄武岩风化残积层的总体趋势,与Sm、Nd等元素在玄 武岩风化残积层富集有关。

#### 3、沉积剖面 Sr、Nd 同位素特征

在沉积环境中,稀土多金属矿化层 Sr 同位素初始值 I_{sr}为 0.70292~0.7075, Nd 同位素初始比值 I_{Nd}为 0.512182~0.512298 ,其εNd(t)值为 -2.37~-0.10, Sr-Nd 同位素特区与峨眉山玄武岩 Sr-Nd 同位素特征相似,表明成矿物质来源 于峨眉山玄武岩。

# 第4章 风化富集阶段研究

# 4.1 峨眉山大火成岩省及其风化成矿潜力

研究区自西向东、由南向北,峨眉山玄武岩厚度逐渐变薄,最厚达 1249 米(图 3-1)。构成峨眉山大火成岩省主体的玄武岩及火山碎屑岩富含高场强 元素和稀土元素,其中,稀土总量(ΣREE)一般含量范围 212-364×10⁻⁶,平均 247×10⁻⁶; Ga 由 18.7-35.4×10⁻⁶,平均 25.5×10⁻⁶; Nb 由 29.2-43.9×10⁻⁶,平均 35.1×10⁻⁶; Sc 由 23.3-45.2×10⁻⁶,平均 29.4×10⁻⁶。特别地,按照《矿产资源工 业要求手册》风化壳型矿床最低工业品位要求,峨眉山玄武岩风化过程中,铌、 稀土等元素再富集 3-4 倍,即可形成工业要求的相应矿床,这为风化富集成矿 提供物质基础。

已有研究表明,峨眉山大火成岩省形成时所处的地理位置为~5.4°S^[12](图 4-1),即位于赤道附近,因此有利于区域内出露地表的玄武岩等岩浆岩及火 山碎屑岩(如:凝灰岩)发生红土化化学风化,在表生作用下,高场强元素(如: Nb)、稀土元素及铂族元素属于惰性元素,在原地得到富集和成矿,形成富稀 土、铌、镓等元素的玄武岩风化壳。



图 4-1 峨眉山大火成岩省古地理位置图^[12]

## 4.2 峨眉山玄武岩现代风化壳地质特征

贵州赫章某地区晚二叠世古地势较高,且峨眉山玄武岩广泛出露,厚度较大,且富集稀土(玄武岩稀土平均含量 247×10⁻⁶)等元素。晚二叠世古气候炎热潮湿,峨眉山玄武岩风化强烈,易发育富稀土、铌、镓多金属元素的风化壳。近年来,作者通过主持中国地调局《贵州赫章野马川地区玄武岩风化壳型稀土资源调查》工作,在赫章某地区面积约 0.6km²(图 4-2)范围内,施工 16-K 山 5 及 16-K 山 39 两个圆井,取样 26 件,稀土矿(化)层平均真厚 5.5 米,平均品位 826×10⁻⁶,共伴生钛、铌、镓、锆、钪等矿产,潜在稀土金属量约 1 万吨。



图 4-2 赫章某地区峨眉山玄武岩风化壳地质及远景图

本文选择贵州赫章某地对峨眉山玄武岩风化壳进行研究,该风化壳厚约数米 至十余米,最厚可达 20 余米,详见 3.4.1 节。

## 4.3 风化剖面元素地球化学特征

本节浅井 16-K 山 5 风化剖面主量、微量及稀土元素分析(表 4-1)是在贵 州省地质矿产中心实验室完成: (1)主量元素采用 PANalytical AXIOS 型 X 射 线荧光光谱仪; (2)微量和稀土元素采用 Perkin-Elmer Sciex ELAN DRC-e 型电 感耦合等离子体质谱仪(ICP-MS)。

表生化学风化作用下,基岩中的矿物会发生不同程度的溶解和流失,实现基 岩物质的流失与重组,伴随元素迁出或带入,基岩不仅发生质量和体积的变化, 还生成某些与表生环境平衡的矿物。目前,常采用等体积计算法、等阴离子计算 法和稳定元素法定量计算风化过程中元素迁移量^[62]。研究发现, Ti 元素能在不同风化程度的表生作用中,保持相对稳定^[61-62],不同学者常选择 Ti 作为参照 元素,计算不同风化程度的风化物样品,元素迁移量的计算公式如下:

 $\mu = \left[ \left( C_{i}^{A} / C_{Ref}^{A} \right) / \left( C_{j}^{O} / C_{Ref}^{O} \right) - 1 \right] \times 100$ [62]

式中  $C_j^A$  和  $C_j^O$ 分别为元素 j 在风化物和基岩中的含量,  $C_{Ref}^A$  和  $C_{Ref}^O$ 分别为 参考元素的含量, 本研究报告选择 Ti 元素作为参照元素。当  $\mu>0$  时,表示元 素发生富集作用,存在外来元素的净加入; 当  $\mu<0$  时,表示元素净迁出, 即 发生元素流失和亏损; 当  $\mu\approx0$  时,表示元素在风化作用过程中其净含量没有 明显的改变^[62]。

## 4.3.1 主量元素地球化学特征

1、见表 4-1、图 4-3,浅井 16-K 山 5 风化剖面垂向上主量元素的总体变化
 规律如下:

(1) Al₂O₃、Fe₂O₃^T、TiO₂ 垂向变化特征相似,相对基岩,随风化程度加深 而富集,具体变现在风化剖面中上部富集。Al₂O₃变化范围:14.0%-21.8%,平均 为18.2%,风化剖面上部平均为21.4%,中部平均为16.6%,下部平均为14.7%; Fe₂O₃^T变化范围:16.4%-25.7%,平均为19.2%,风化剖面上部平均为20.9%,中 部平均为18.4%,下部平均为17.0;TiO₂变化范围:4.75%-7.22%,平均为5.54%; 风化剖面上部平均为5.57%,中部平均为5.67%,下部平均为5.15%。

(2) Na20、CaO、K2O、MgO 垂向变化特征大体相似,相对基岩,随风化 程度加深而流失。其中,Na20、CaO 流失最为严重;K2O、MgO 在上部流失严 重,中部流失减弱,K2O 在风化残积层存在局部富集现象;SiO2总体呈现相对弱 的流失。具体表现为:Na20 变化范围:0.04%-0.16%,平均为0.09%,风化剖面 上部平均为0.06%,中部平均为0.41%,下部平均为1.59%;Na20 变化范围: 0.04%-0.16%,平均为0.09%,风化剖面上部平均为0.06%,中部平均为0.41%, 下部平均为1.59%;CaO 变化范围:0.07%-1.68%,平均为0.43%,风化剖面上 部平均为0.08%,中部平均为0.46%,下部平均为1.06%;K2O 变化范围: 0.02%-0.65%,平均为0.13%,风化剖面上部平均为0.42%,中部平均为2.79%(剔 除局部富集样平均值为2.24%),下部平均为2.39%;MgO 变化范围:

0.36%-3.37%, 平均为1.87%, 风化剖面上部平均为0.52%, 中部平均为2.64%, 下部平均为3.29%。

(3) MnO、P₂O₅ 垂向变化规律呈凹槽状,在顶部腐殖土和风化黏土与风化 残积层界面出现富集带。MnO 变化范围: 0.12%-0.34%,平均为 0.19%;风化剖 面顶部腐殖土 0.27%,上部平均为 0.15%,风化黏土底部 0.34%,中部平均为 0.18%,下部平均为 0.20%; P₂O₅ 变化范围: 0.25%-0.45%,平均为 0.29%,风化 剖面顶部腐殖土 0.39%,上部平均为 0.27%,风化黏土底部 0.45%,中部平均为 0.27%,下部平均为 0.28%。

(4) SiO2 垂向变化特征显示,相对基岩,随风化程度加深而存在微弱流失, 但在风化亚黏土层和残积层界面发生较强的流失。变化范围: 26.6%-43.6%,平 均为 37.3%,风化剖面上部平均为 34.2%,中部平均为 38.4%,下部平均为 41.6%。

样品号	岩性	Al ₂ O ₃	SiO ₂	TFe ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	LOSS
H1	腐殖土	20.7	33.7	21.6	5.93	0.30	0.07	0.11	0.49	0.39	0.27	12.7
H2		20.4	38.8	18.0	4.75	0.56	0.09	0.11	0.72	0.29	0.19	13.3
Н3	风化亚	21.8	36.8	19.2	4.94	0.61	0.07	0.08	0.56	0.22	0.12	12.4
H4	黏土粘	21.8	34.9	20.4	5.46	0.48	0.08	0.07	0.52	0.27	0.15	12.4
H5	土层	21.8	34.5	21.0	5.47	0.43	0.06	0.07	0.47	0.29	0.14	12.1
H6		21.7	26.6	25.7	7.22	0.14	0.03	0.07	0.36	0.45	0.34	12.1
H7	×	17.1	40.1	16.9	5.4	4.42	0.06	0.16	2.23	0.26	0.18	8.87
H8	玄武岩	17.1	39.3	18.8	5.57	2.86	0.07	0.28	1.9	0.26	0.18	9.44
H9	风化残	17.7	34.4	20.1	6.36	2.10	0.12	0.46	2.49	0.29	0.20	11.1
H10		16.5	35.9	19.3	5.81	2.19	0.31	0.67	3.33	0.27	0.17	11.1
H11		14.7	42.1	16.7	5.19	2.42	1.48	0.75	3.29	0.27	0.19	9.22
H12	- 弱风化 - - 玄武岩 -	15.1	40.7	17.3	5.33	2.45	0.75	0.79	3.37	0.25	0.22	9.87
H13		15.0	40.5	17.2	5.27	2.55	1.46	0.73	3.27	0.28	0.20	9.21
H14		14.0	43.6	16.4	4.86	2.16	2.57	1.68	3.23	0.32	0.18	7.52

表 4-1 贵州西部某地浅井 16-K 山 5 风化剖面主量元素含量(×10-2)

采用稳定元素法,以 Ti 作为参照元素计算μ,玄武岩风化剖面中,各元素μ 情况见表 4-2,可以总结出,亚黏土层相对基岩而言,主量元素的活动性顺序为: Na、Ca、Mg、K、Si、P、Mn、Fe、Al,μ值范围: -97.6-36.7,Fe(μ: 11.5)、 Al(μ: 36.7)相对富集。风化残积层主量元素活动性顺序为: Na、Ca、Mg、Si、 P、Mn、Fe、Al、K,μ值范围: -85.6-12.7,Al(μ: 2.00)、K(μ: 12.7)相对 富集。

样品号	岩性	Al	Fe	Na	Ca	K	Mg	Р	Mn	Si
H1	腐殖土	21 18	.94	<b>-97</b> .77	-94.63	-88.62	-87.57	-0 12	22 93	-36.65
H2	2	49 <mark>.0</mark> 9	12.30	-96.42	-93.30	-73.47	-77.19	-728	8.00	-8.95
H3	玄武岩风	53.19	11.18	-97.32	-95.32	-72.22	-82.94	-3236	-34.41	-16.96
H4	化亚黏土	38.60	10.72	-97.23	-96.29	-80.22	-85.67	-24 90	-25.82	-28.75
H5	层	38.35	13.77	<b>-97</b> .93	-96.30	-82.31	-87.07	-1948	- 10.90	-29.70
H6	0.0000	4.34	1.48	-99.21	-97.20	-95.64	-92.50	-534	27 15	58.93
<b>H</b> 7		9.93	-7.26	-97.90	-91.43	84.17	-3.86	-2088	-10.00	-1.22
H8	玄武岩风	6.57	<b>0</b> .02	-97.62	-85.46	15.53	-48.67	-2911	-12.75	-2.35
H9	化残积土	-3.39	-6.34	-96.43	-79.08	-25.71	-41.09	-3075	-15.09	-39.71
H10	层	-1.41	-1.56	-89.91	-66.64	-15.19	-1.76	-2942	-2.00	-3.12
H11		-1.68	-4.65	-46.07	-58.20	4.91	-4.62	-20 99	-1.16	-9.58
H12	玄武岩弱	-1.65	-\$.81	-73 39	-57.12	3.42	-4.87	-28 76	11.44	-1.88
H13	风化层	-1.19	-3.28	-47.61	-59.93	8.87	-6.64	-19 31	2.47	-14.34

主ょう	电刷单动其神论并		化动声十旦一	主迁投旦之旦。		0/ )
夜 4-2	页川四即未地/戊井	10-к щ э ж	化司迪土里儿	糸儿 (7) 里 止 里	μ1寸1圧 \	, 70J



图 4-3 贵州西部某地浅井 16-K 山 5 风化剖面主量元素氧化物含量垂向变化图

### 4.3.2 稀土元素地球化学特征

浅井 16-K 山 5 工程((图 3-16)取样测试分析发现:

1、浅井 16-K 山 5 风化剖面垂向上,各稀土元素含量变化趋势一致,具体表现为风化亚黏土层(稀土氧化物总量(TREO,下同)平均值 323×10⁻⁶) <玄武 岩弱风化层(TREO 平均值 388×10⁻⁶) <风化残积层(TREO 平均值 809×10⁻⁶), 指示风化过程中,稀土元素先富集,再流失,最终在风化残积层中富集,稀土富 集系数为 2.0-5.0,已达到风化淋积型稀土矿床的含量指标。

2、16-K山5稀土矿(化)层TREO变化范围847-1146×10⁻⁶,平均品位为973×10⁻⁶;稀土浸出率变化范围15.2-45.2×10⁻²,平均浸出率为26.3×10⁻²,共伴生TiO₂平均品位5.79×10⁻⁶,Nb₂O₅平均品位71.7×10⁻⁶,Ta₂O₅平均品位4.48×10⁻⁶,ZrO₂平均品位372×10⁻⁶,Sc平均品位31.3×10⁻⁶(图4-4)。其中,中稀土氧化物总量(TMREO,下同)浸出率>重稀土氧化物总量(THREO,下同)浸出率>轻稀土氧化物总量(TLREO,下同)浸出率,CeO₂含量占TREO30-35×10⁻²,但浸出率最低(1.5-7.6×10⁻²,平均3.23×10⁻²)(表4-3,4-4,图4-3、4-4、4-5、4-6);厚度4米。

3、采用稳定元素法,以 Ti 作为参照元素计算μ,玄武岩风化剖面中,各元 素μ情况见表 4-5: (1)亚黏土层相对基岩而言,各稀土元素表现轻微流失,稀 土元素的活动性顺序为: Eu、Sm、Nd、Gd、Tb、Dy、Pr、Y、Ho、La、Er、 Tm,Yb、Lu、Ce,μ值范围: -54.0-62.7,Yb、Lu、Ce 在风化亚黏土层为富集, μ范围 2.51-62.7; (2)风化残积层稀土元素相对基岩而言,各稀土元素整体富 集,μ范围 41.6-112,相对富集程度顺序为:Pr、Nd、La、Sm、Gd、Eu、Tb、Y、 Dy、Ho、Er、Ce、Tm、Yb、Lu 相对富集。



图 4-3 贵州西部某地浅井 16-K 山 5 风化剖面轻、中、重稀土氧化物总量及浸取率垂下变化图



图 4-4 贵州西部某地浅井 16-K 山 5 风化剖面轻稀土元素氧化物含量及浸取率垂下变化图



图 4-5 贵州西部某地浅井 16-K 山 5 风化剖面中稀土元素氧化物含量及浸取率垂下变化图



图 4-6 贵州西部某地浅井 16-K 山 5 风化剖面重稀土元素氧化物含量及浸取率垂下变化图

样品编号	样品名	RexOy	Y2O3	La ₂ O ₃	CeO ₂	<b>Pr6O</b> 11	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
件前编写	称	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)
16-K山 5H1	腐殖土	534	55	88	221	26	84	16	4.2	14	2.2	10	2.2	5.5	0.86	4.7	0.79
16-K山 5H2		331	48	54	130	16	38	10	2.8	10	1.7	8.1	1.9	4.6	0.72	3.8	0.66
16-K山 5H3	玄武岩	333	47	47	143	13	42	9	2.2	8.6	1.5	7.4	1.8	4.6	0.73	4.1	0.71
16-K山 5H4	风化亚 黏土层	311	45	41	138	12	37	8	2.0	8.1	1.3	7.2	1.8	4.4	0.73	4.0	0.68
16-K山 5H5		319	43	37	160	10	33	7	1.8	7.2	1.2	6.6	1.6	4.3	0.69	3.8	0.67
16-K山 5H6		482	58	69	207	21	68	14	3.7	13	2.1	11	2.4	6.0	0.94	5.1	0.85
16-K山 5H7		1146	150	243	176	88	306	57	16	48	6.9	28	5.5	12	1.57	7.7	1.21
16-K山 5H8	玄武岩	980	146	154	224	62	230	47	14	42	6.3	27	5.4	12	1.52	7.3	1.12
16-K山 5H9	风化残积层	847	136	161	168	53	183	40	12	38	5.6	26	5.0	11	1.37	6.4	0.98
16-K山 5H10	1/1/4	920	150	191	129	64	223	46	14	44	6.3	27	5.3	11	1.37	6.6	1.01
16-K山 5H11		480	88	98	91	27	94	20	6.8	21	3.3	15	3.1	6.6	0.88	4.3	0.68
16-K山 5H12	玄武岩	399	70	68	102	21	72	16	5.5	16	2.7	12	2.6	5.8	0.82	4.1	0.64
16-K山 5H13	弱风化	399	71	59	104	21	75	17	5.8	17	2.7	13	2.7	5.9	0.83	4.1	0.66
16-K山 5H14	层	367	59	62	88	21	74	16	5.2	15	2.4	11	2.3	5.1	0.70	3.6	0.58

表 4-3 贵州西部某地浅井 16-K 山 5 风化剖面稀土元素氧化物含量表

样品编号	样品名	RexOy	Y2O3	La ₂ O ₃	CeO ₂	<b>Pr6O</b> 11	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
件币细亏	称	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)	(10-6)
16-K山 5H1	腐殖土	72	13.5	11.7	14.1	8.7	23.8	23.4	18.8	17.2	14.6	16.8	11.9	10.8	9.0	7.4	5.9
16-K山 5H2		44	13.3	9.9	14.2	12.7	17.4	21.1	12.4	12.1	10.9	11.8	8.6	7.9	6.4	5.2	4.0
16-K山 5H3	玄武岩 図 化 亚	12	3.5	1.9	7.2	3.0	5.0	4.3	3.0	2.8	2.4	2.6	1.6	1.4	1.2	0.9	0.7
16-K山 5H4	<u>新</u> 土层	17	5.4	3.0	11.4	4.6	7.8	6.7	4.4	4.0	3.4	3.6	2.3	2.1	1.7	1.3	1.0
16-K山 5H5		19	6.1	3.0	13.4	5.1	9.8	8.5	5.5	4.8	4.0	4.4	2.6	2.4	1.9	1.4	1.0
16-K山 5H6		35	7.2	4.9	14.2	4.4	12.1	11.4	7.1	6.2	5.7	5.6	3.5	3.1	2.7	1.9	1.4
16-K山 5H7		518	45.2	43.7	42.5	7.6	58.4	57.8	70.1	67.0	50.5	69.7	55.0	55.4	49.8	46.1	37.3
16-K山 5H8	玄武岩	261	26.6	24.3	42.7	2.3	39.9	35.5	34.1	31.5	35.3	31.8	21.5	22.0	19.0	14.0	10.0
16-K山 5H9	风化残积层	129	15.2	15.0	18.7	1.6	22.5	21.9	19.8	17.9	21.1	18.0	10.8	10.8	9.2	6.1	4.6
16-K山 5H10	1/1/4	168	18.3	17.1	19.0	1.5	24.4	24.7	24.8	22.6	25.8	21.8	13.5	13.4	11.7	8.1	5.9
16-K山 5H11		15	3.1	4.7	1.8	1.0	4.2	4.7	3.5	3.2	4.2	3.6	2.3	2.2	1.7	1.2	0.8
16-K山 5H12	玄武岩	17	4.2	5.1	4.5	0.9	6.7	7.0	5.0	4.4	5.6	4.5	2.7	2.5	1.9	1.3	0.9
16-K山 5H13	弱风化	12	3.1	3.4	4.2	0.8	5.0	4.9	3.2	2.8	3.7	2.9	1.7	1.6	1.2	0.9	0.6
16-K山 5H14	层	6.02	1.6	1.8	2.2	0.6	2.4	2.4	1.6	1.3	1.8	1.5	0.8	0.8	0.7	0.4	0.3

表 4-4 贵州西部某地浅井 16-K 山 5 风化剖面稀土元素氧化物浸出量分析表

样品编号	样品名 称	<b>∑</b> REE	轻稀土 总里	中稀土 总里	重稀土 总里	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	тb	Dy	Ho	Er	Tm	Yb	Lu
H1	腐殖土	19.2	39.1	-23.3	-20.3	-23.6	16.3	105.8	1.5	-7.0	-18.0	-33.8	-23.5	-24.9	-25.5	-21.6	-11.6	0.7	7.0	11.6
H2	abs also bly	-8.2	-1.5	-32.7	-14.1	-16.8	-10.9	51.1	-22.0	-47.5	-36.1	-44.9	-31.8	-27.5	-24.7	-15.5	-7.7	5.2	8.0	16.4
H3	玄武岩	-11.3	-2.6	-43.1	-18.4	-21.6	-25.4	59.9	-39.1	-44.2	-44.7	-58.4	-43.6	-38.5	-33.8	-23.0	-11.3	2.6	12.0	20.4
H4	风化业	-24.9	-18.1	-52.2	-29.0	-32.1	-41.1	39.6	-49.1	-55.5	-55.5	-65.8	-51.9	-51.8	-41.7	-30.3	-23.2	-7.2	-1.1	4.4
H5	8H 12/25	-23.6	-14.2	-57.3	-32.4	-35.2	-47.0	61.5	-57.7	-60.4	-61.1	-69.2	-57.4	-55.6	-46.7	-38.2	-25.1	-12.4	-6.2	2.6
H6		-11.9	-0.7	-40.5	-30.5	-33.8	-25.1	58.3	-32.7	-38.1	-41.1	-52.1	-41.7	-41.1	-32.7	-29.8	-20.8	-9.6	-4.6	-1.4
H7	1. 2. 3	183.8	200.5	182.8	124.3	128.8	252.7	<mark>8</mark> 0.0	277.1	272.2	220.6	176.9	188.0	158.8	129.1	115.2	111.8	101.9	92.5	<mark>8</mark> 7.8
H8	玄武岩	133.9	138.9	139.7	111.8	115.9	116.7	122.1	157.6	171.2	156.3	134.9	144.3	129.0	114.2	104.9	105.3	89.5	76.9	68.5
H9	和尼	77.3	76.7	87.3	72.0	76.1	9 <mark>8</mark> .4	45.9	<b>9</b> 2.9	89.0	91.0	76.3	<mark>9</mark> 3.6	78.3	80.6	66.1	64.8	49.6	35.8	29.1
H10	101725	111.2	108.6	131.5	105.1	112.7	157.7	22.6	154.9	152.1	140.5	125.2	145.4	119.6	105.3	92.8	80.4	63.7	53.4	45.7
H11		22.8	18.8	24.8	35.7	39.7	48.0	-3.2	20.4	19.0	17.1	22.5	31.1	28.8	27.7	26.2	21.2	17.7	11.8	9.8
H12	玄武岩	-0.7	-2.2	-4.0	7.3	8.2	0.0	5.7	-8.8	-11.3	-8.8	-3.6	-2.7	2.6	-0.5	3.1	3.7	6.8	3.8	0.6
H13	<b>海风化</b> 层	0.5	-2.7	3.2	10.1	11.0	-12.2	9.0	-7.8	-6.5	-2.0	2.9	4.5	3.7	9.0	8.3	6.7	9.3	5.0	4.9

表 4-5 贵州西部某地浅井 16-K 山 5 风化剖面稀土元素迁移量定量μ特征(%)
### 4.3.3 微量元素地球化学特征

1、见表 4-6、图 4-7, 浅井 16-K 山 5 风化剖面垂向上主量元素的总体变化 规律如下: ZrO₂、Nb₂O₅、HfO₂、Ta₂O₅、V、Ga、Th、U 在玄武岩风化亚黏土层 富集,表现为随风化程度加强而富集趋势;Y₂O₃和 Rb 在玄武岩风化残积层中富 集;Sr 和 Ba 随风化程度加强,流失越强;而 Cr 元素在玄武岩风化剖面中较为 稳定,变化不大。浅井 16-K 山 5 工程((图 3-16)取样分析发现:风化亚黏土 层和风化残积层中铌、钽、锆、钛、钪相对于表 3-2 中贵州西部地区峨眉山玄武 岩相应元素含量平均值而言,富集系数范围为 1.0-3.0。

2、采用稳定元素法,以 Ti 作为参照元素计算μ,玄武岩风化剖面中,各元 素μ情况见表 4-7。贵州西部某地峨眉山玄武岩风化过程中,亚黏土层相对基岩 而言,各微量元素的活动性顺序为: Ba、Sr、Rb、Zr、V、Hf、Sc、Ga、Nb、 Sn、W、Th、U、Li、Ta、Cs、Cr,其中,Ba、Sr、Rb、Zr 变现为流失,其他 元素变现为富集。风化残积层微量元素相对基岩而言,除 Nb、Rb、Ta、Cs及 Cr 总体富集外,其它元素变现为流失,各微量元素的活动性顺序为: Sr、Ba、 W、Zr、Th、Hf、V、Li、Sc、U、Ga、Sn、Nb、Rb、Ta、Cs、Cr。

Sample	16-K5H1	16-K5H2	16-K5H3	16-K5H4	16-K5H5	16-K5H6	16-K5H7	16-K5H8	16-K5H9	16-K5H10	16-K5H11	16-K5H12	16-K5H13	16-K5H14
样品 名称	腐殖土		风化亚黏	土粘土层				玄武	式岩风化残	积土层			弱风化	玄武岩
Sn	4.68	4.88	4.78	5.035	5.03	5.13	3.89	3.985	3.92	3.8	3.12	4.045	3.4	3.35
Zr	597	517	759	611	580	658	491	483	558	479	624	717	709	623
Nb	120	96.5	105	113	117	151	101	96.7	110	102	86.3	88.0	93.4	78.5
Hf	15.7	13.9	16.7	14.8	15.1	16.5	12.8	13.0	15.2	12.9	13.8	15.2	15.4	13.9
Ta	6.91	5.59	6.18	6.43	6.29	8.53	5.12	5.36	5.95	5.46	4.82	4.92	5.33	4.62
Cr	74.4	92.9	101	94.4	81.6	64.1	101	68.2	87.5	91.1	75.5	84.3	113	90.3
Ba	188	199	152	142	144	120	327	537	1032	1408	1720	1608	1752	1662
Li	22.1	36.1	36.6	31.6	28.3	8.9	18.8	13.1	17.8	17.1	11.3	14.6	12.9	13.5
Rb	23.4	42.4	42.5	40.0	32.0	9.88	203	169	202	174.0	95.6	99.4	82.2	61.2
Sc	36.3	29.5	32.4	36.7	35.3	41.4	21.5	32.6	36.3	34.7	30.6	31.0	31.5	29.3
Sr	34.7	28.3	27.9	26.0	25.1	15.9	53.4	51.9	47.2	61.6	116.4	80.6	119	196
V	537	440	495	544	524	656	512	507	562	513	324	473	431	466
Ga	39.5	34.9	39.3	43.1	40.4	41.6	31.5	32.8	36.2	34.4	29.2	32.1	31.0	30.0
Cs	3.48	7.48	7.93	6.66	5.75	1.08	5.18	2.19	1.12	0.74	0.44	0.71	0.51	0.47
W	1.48	2.08	2.25	2.12	2.05	1.00	1.59	1.20	0.54	0.46	0.10	0.89	0.19	1.09
Th	10.2	13.4	13.3	12.8	11.9	6.88	3.68	5.63	6.96	6.14	5.60	5.47	5.96	6.49
U	3.07	3.75	3.88	3.66	3.44	2.44	2.17	2.07	2.02	1.80	1.54	1.65	1.80	1.78

表 4-6 贵州西部某地浅井 16-K 山 5 风化剖面风化剖面微量元素含量(×10-6)

注:本文。



图 4-7 贵州西部某地浅井 16-K 山 5 风化剖面微量元素含量垂向变化图

样品编号	样品名称	Ba	Sr	Rb	Zr	Hf	V	Sc	Ga	Sn	Nb	Li	W	Th	U	Ta	Cs	Cr
H1	腐殖土	-90.7	-85.5	-58.7	-21.5	-7.43	-5.56	1.54	7.91	14.5	25.3	34.2	11.3	28.8	41.4	168	\$07	56321
H2		-87.7	-85.2	-29.1	-15.1	2.32	-3.39	3.01	9.0	49.0	25.8	174	95.2	111	116	171	1528	87853
H3	玄武岩风	-91.0	-86.0	<b>-31</b> .7	19.9	18.2	4.50	8.79	28.9	40.4	31.6	167	103	102	114	188	1560	91843
H4	化业输工	-92.4	-88.2	41.8	-12.7	-5.23	3.91	11.5	27.9	33.8	28.1	108	73.1	75.6	83.0	171	1161	77651
H5	云	-92.3	-88.6	53.5	-17.3	-8.48	-0.09	7.04	9.6	33.4	32.4	86.3	67.1	62.9	71.7	163	987	66986
H6		-95.1	-94.5	-89.1	-28.9	-20.1	-5.24	-4.89	- <mark>6.6</mark> 6	3.08	29.5	5.6	38.2	-28.6	-7.73	172	55	39 <mark>825</mark>
H7		-82.3	-75.5	199	-29.1	-17.1	-1.12	-34.0	-5.50	4.51	15.8	25.3	31.3	49.0	9.72	118	892	84011
H8	玄武岩风	-71.8	-76.9	141	-32.4	-18.4	-5.07	-2.92	-4.60	3.79	7.48	- 5.3	-3.94	-24.3	1.47	121	307	549 <mark>6</mark> 2
H9	化残积层	-52.6	-81.6	152	-\$1.6	-16.4	7.84	-5.33	-7.79	-10.6	7.08	0.75	-62.1	-18.1	-13.3	115	82.1	61770
H10		-29.1	-73.7	138	\$5.7	22.4	7.91	-0.93	-4.08	-5.11	8.69	5.96	-54.7	-20.9	-15.4	116	31.7	70413
H11		-8.09	44.4	46.3	-6.21	-7.03	-34.9	-2.20	8.86	-12.8	2.95	-11.6	-91.4	-19.2	-19.0	114	-12.3	65319
H12	玄武岩弱	-11.8	-52.5	48.1	4.94	-0.29	-7.45	-8.53	-2.44	10.1	2.22	-1.39	25.5	-23.1	-15.5	112	37.7	71026
H13	风化层	-2.79	44.0	23.9	4.95	2.17	14.7	-0.86	-4.71	-6.40	9.72	- 1.9	-83.9	-15.3	-6.74	133	0.07	96326

表 4-7 贵州西部某地浅井 16-Κ山 5 风化剖面微量元素迁移量定量μ特征(%)

# 4.4 赋存状态研究

#### 1、矿物微区分析

采集典型矿石(16-K5-H7)样品,在中国地质大学(武汉)采用透射电镜明场模式、 电子衍射和能谱仪检测方法,进行组成矿物的晶体形态、颗粒大小等形貌观察,以及代 表性区域的晶体结构及化学成分分析。分析结果表明本样品矿物组成为锐钛矿、金红石、 钛铁矿、磁铁矿、赤铁矿(褐铁矿)、钾长石、高岭石等(图 4-8、4-9、4-10)。检测 到含 P、Se、Zr、Sn 成分颗粒(图 4-11),但因其粒度较小且与其它矿物呈集合体形态, 未能确定其赋存矿物类别。测试过程中对两个 TEM 样品中近两千个视域及颗粒进行了 X 射线能谱成分定性分析,均未检测到含铌、稀土元素成分的矿物颗粒,即未检测到含 铌、稀土的独立矿物,至少说明该样品中含铌、稀土的独立矿物十分稀少。



图 4-8 TEM 样品 16K339-h4-1 中的铁矿物

A 为铁矿物的 TEM 形貌像; B 为该区域的 X 射线能谱图; C 为该区域的多晶电子衍射图; D 为多晶电子衍射测量点 分布,测量结果如表 1 所示; 结果表明该区域为磁铁矿与赤铁矿(褐铁矿)的集合体,且以磁铁矿为主。





224

-112

图 4-10. TEM 样品 16K339-h4-1 中的硅酸盐矿物

A 为硅酸盐矿物的 TEM 形貌像, B 为该矿物的 X 射线能谱图,指示该颗粒为钾长石(照片 A 中心的颗粒)



图 4-11 TEM 样品 16K339-h4-2 代表性透射电镜分析结果 A为16K339-h4-2-1 颗粒形貌照片; B为能谱图,指示该矿物颗粒为钾长石和赤铁矿(或磁铁矿)集合体,含有 P、 Se、Zr、Sn成分。(注:能谱图中 Cu 元素的峰来自于样品台及载网)

### 2、扫描电镜分析

分析测试工作在中国科学院地球化学研究所矿床地球化学国家重点实验室, 选用 EPMA 1600 型电子探针完成。

典型稀土多金属矿石样品的岩矿鉴定及扫描电镜面扫描分析见图 4-12,可以发现:

(1)玄武岩风化淋积型稀土多金属矿石主要矿物为粘土矿物,次为铁矿物、 钛矿物,少量石英等矿物颗粒。偶见少量玄武岩、玄武质火山碎屑表生作用下粘 土化的产物,粒度极其微小,呈显微鳞片状或叶片状,粒度极为细小。其中,粘 土矿物主要为高岭石,次为蒙脱石、绿泥石、水云母等;赤铁矿、钛铁矿、金红 石、褐铁矿主要以粒状和条状分布于粘土矿物中,粒度 5-25µmm 左右;而石英 主要以晶屑形式存在,部分以粒状嵌布于矿石的空隙中,粒度一般在 0.02~ 0.30mm。

(2) 主量元素电镜面扫描分析结果显示(图 4-12),表生风化作用下,K 元素较为分散,而 Al、Fe、Ti、Si及 P 在局部富集。

(3) 轻稀土元素电镜面扫描分析结果显示(图 4-13),表生风化作用下, La、Ce、及 Pr 在局部富集,而 Nd 元素较为分散。

(4)中稀土元素电镜面扫描分析结果显示(图 4-14),表生风化作用下, Tb 和 Dy 在局部富集,而 Sm、Eu 及 Gd 元素较为分散。

(5) 重稀土元素电镜面扫描分析结果显示(图 4-15),表生风化作用下, Sc 局部明显富集, Er 和 Tm 局部轻微富集,而 Yb、Lu 及 Y 元素较为分散。

(6) 微量元素电镜面扫描分析结果显示(图 4-16),表生风化作用下,Zr、 Ga及 Nb元素均较为分散。

102



Р

图4-12 典型风化淋滤型稀土多金属矿石16-K5-H7矿物主量元素扫描电镜分析



电镜分析(500μm)

La





Ce

Nd

Pr

图4-13 典型风化淋滤型稀土多金属矿石16-K5-H7矿物轻稀土元素扫描电镜分析









Eu

Gd



 Tb
 Dy

 图4-14 典型风化淋滤型稀土多金属矿石16-K5-H7矿物中稀土元素扫描电镜分析



图4-15 典型风化淋滤型稀土多金属矿石16-K5-H7矿物重稀土元素扫描电镜分析





Ga



Nb

Zr

图4-16 典型风化淋滤型稀土多金属矿石16-K5-H7矿物微量元素扫描电镜分析

### 3 稀土浸出试验

浸出试验主要包括 5g 以内的小量浸出试验、40g 摇瓶试验、40g 淋浸试验、400g 搅拌浸出试验,以探索稀土浸取率情况。

#### (1) 小批量浸出试验

将试料(H2D)称取1克试样置于300 mL锥形瓶中,加入80毫升4%的硫酸铵 溶液。于室温震荡2h后。定容干过滤,用ICP-MS测定滤液中稀土总量。试验结 果见表4-8,TREO浸取率为10.98%。

名称	RexOy 品位(g/t)	RexOy 浸出率(%)
浸液	525	40.98
原矿	1281	100.00

### (2) 摇瓶浸出试验

将试料(H2D、H4D、H7D混合样)称取40克试样置于500 mL锥形瓶中,加

入200毫升2%的硫酸铵溶液。于室温震荡45min后。过滤,滤渣用ICP-MS测定。 试验结果见表4-9,TREO浸取率为31.18%。

表4-9 摇瓶浸出试验结果

夕称	<b>立</b>		品位	t(g/t)		浸出率(%)						
石仦	厂平(%)	Ga	Nb	Sc	Re _x O _y	Ga	Nb	Sc	TREO			
浸渣	99.70	40.20	65.40	33.20	863	0.00	0.00	2.95	31.18			
原矿	100.00	37.30	63.70	34.10	1250	100.00	100.00	100.00	100.00			

#### (3) 淋洗浸出试验

将试料(H2D、H4D、H7D混合样)称取40克试样置于淋洗柱中,加入30毫 升2%的硫酸铵溶液,淋洗4次。过滤,滤渣用ICP-MS测定。试验结果见表4-10, TREO浸取率为53.85%。

名称	产塞(%)		品位(g/t)		浸出率(%)					
<b>山</b> 小	厂卒(70)	Ga ₂ O ₃	Sc ₂ O ₃	Re _x O _y	Ga ₂ O ₃	$Sc_2O_3$	TREO			
浸渣	99.30	48.00	45.70	581	5.35	13.58	53.85			
原矿	100.00	50.36	52.51	1250	100.00	100.00	100.00			

表4-10 淋洗浸出试验结果

#### (4) 搅拌浸出试验

将试料(H2D、H4D、H7D混合样)称取400克试样置于3L搅拌槽中,加入2 升4%的硫酸铵溶液。于室温搅拌浸出45min。过滤,滤渣用ICP-MS测定。试验 结果见表4-11,TREO浸取率为34.87%。

名称	<b>立</b> 亥 (0/ )		品位(g/t)		浸出率(%)						
石柳	) 平(70)	Ga ₂ O ₃	$Sc_2O_3$	Re _x O _y	Ga ₂ O ₃	$Sc_2O_3$	TREO				
浸渣	99.77	49.50	55.40	816	1.94	0.00	34.87				
原矿	100.00	50.36	52.51	1250	100.00	100.00	100.00				

表4-11 摇瓶浸出试验结果

### (5) 盐酸浸取试验

用硫酸铵溶液,不同浸取方式,稀土浸取率均不高,最高仅 53.85%。见 4.3.2 节,Ce 浸取率极低,1.5-7.6×10⁻²,平均 3.23×10⁻²。即矿石中稀土还可能存在其 他的相态,比如胶态沉积相稀土、矿物相稀土或者类质同相稀土等,且其占比较 大。为了确定这一推断,开展盐酸浸取实验。

盐酸浓度试验条件为浸出液固比6:1,盐酸浓度变量,浸出温度为60℃,浸出时间为1h。试验结果表明(表4-12),随着盐酸浓度的增加,稀土浸出率增加,最高达86.29%。

浓度(%)	原矿品位(g/t)	浸渣产率(%)	浸渣品位(g/t)	浸出率(%)
2	779	90.64	302	64.86
4	779	89.50	289	66.80
6	779	87.72	276	68.92
8	779	85.88	266	70.68
10	779	83.76	249	73.23
20	779	72.20	221	79.52
31	779	65.90	162	86.29

表 4-12 盐酸浸出稀土浓度试验结果

### (6) 稀土浸出试验小结

从上述多种浸出方法试验结果可以看出,振荡、搅拌浸出稀土时,稀土浸出 率保持在31.18-40.98%之间,而柱淋洗浸出稀土浸出率达53.85%,镓、钪等元素 不被浸出或浸出率相当低。

综合上述,采用透射电镜明场模式、电子衍射和能谱仪检测方法均未发现独 立的稀土矿物,Ce元素含量占稀土总量30%左右,但浸出率最低(6.6-14.3×10⁻², 平均8.65×10⁻²)。而用盐酸浸取,随浓度的增加,稀土浸出率增加,最高达86.29%。 因而推测稀土还可能存在其他的相态,比如胶态沉积相稀土、矿物相稀土或者类 质同相稀土等。

### (7) 多元素综合利用探索试验

稀土提取-沉钛-富集铌(钽)流程(图4-17)所示,该流程通过用10%盐酸 优先浸出稀土,稀土浸出率73.83%,镓浸出率78%,其中铈浸出率94.99%,同时 铝铁等杂质元素浸出率在40-70%。浸渣中钛、铌(钽)等元素获得富集,然后 采用硫酸焙烧法水浸浸出79%左右的铌(钽),89%的钛,通过钛沉淀工艺可以 获得含氧化钛26%的钛精矿,该精矿可以进一步提纯。





# 第5章 沉积分异阶段研究

贵州西部晚二叠世以海侵为主,并以长兴期海侵范围最大、延续时间最长,最大海 侵范围至威宁二塘及盘县土城一带。同时,该期贵州古地势由北北西向南南东倾斜,海 水先由南南东方向侵入,然后由东向西淹没,形成海水极浅的陆表海。晚二叠世在总的 海侵背景下,海水进退频繁,造成了峨眉山玄武岩及其风化产物风化剥蚀程度的不断加 深。海侵海退过程中,富含稀土、铌、镓、钛、铝、铁等元素的峨眉山玄武岩风化产物 进入海水体系。其中,首先,重力分异作用,可将轻重矿物分异,铁等重矿物近岸环境 沉积成矿;富含 Na⁺、k⁺、CI⁻等离子的海水很容易将峨眉山玄武岩风化物中的离子吸附 态稀土浸取出来,并随流水带走,随着氧化还原环境变化,发生轻重元素分异;而 Al 元素容易形成稳定络合物,常距离迁移过程中,常携带稀土、铌、镓等元素;伴随着环 境变化和物理化学作用,稀土、铌、镓、铁、铝等元素发生了分异和沉积,并形成具有 特色的峨眉山玄武岩古风化-沉积型稀土多金属矿床系列。

# 5.1 峨眉山玄武岩古风化-沉积型稀土多金属成矿潜力分析

国内外研究报道已不同程度地发现,在峨眉山大火成岩省周缘,晚二叠世发育多种峨眉山玄武岩表生和次生作用成因的矿床。如广西靖西-德宝-田阳铝土矿成矿带和云南文山县晚二叠纪铝土矿带等,其成矿物质来源与峨眉山大火成岩省的风化剥蚀关系密切^[63-65]。特别是 2012 年-2015 年,作者所在单位在贵州西部地区实施"贵州威宁-水城地区铁多金属矿整装勘查"和"贵州乌蒙山区优势矿产综合地质调查评价(铁稀土)",投入勘查经费近 5000 万元,经过多年的工作积累,在局部地区已估算稀土矿资源量 100 多万吨,伴生钪金属量 0.70 万吨,铁矿(332+333+334)资源量约 2.34 亿吨。同时,富 Ga、Nb 等三稀元素,REE 含量一般 0.08-1.60%,Sc 含量一般 30-100×10⁶,Nb 含量一般 200-1000×10⁶,Ga 含量一般 60-120×10⁶;矿化程度都较高,且较为稳定,潜在资源量巨大。

对威宁哲觉地区(680Km²)2157 件基岩样品的 TFe、TiO₂、V₂O₅、Nb₂O₅、ΣREE、 TiO₂、V₂O₅、Sc 化学测试数据进行统计分析(表 5-1),区内玄武岩及凝灰岩具有较高 的 Nb₂O₅、ΣREE、TFe、TiO₂、V₂O₅、TFe、TiO₂、V₂O₅、Sc 背景值。Nb₂O₅、ΣREE 在

111

各岩性中含量变化特征相似,总体而言,在粘土岩和粉砂岩中的背景值高。粘土岩和粉砂岩中,随 TFe 含量变低, Nb₂O₅、ΣREE 含量变高。粘土岩 Nb₂O₅变化范围为 142.2×10⁻⁶-355.2×10⁻⁶,平均值为 234.1×10⁻⁶;粉砂岩 Nb₂O₅变化范围为 107.8×10⁻⁶-279.8×10⁻⁶,平均值为 162.2×10⁻⁶;粘土岩ΣREE 变化范围为 474×10⁻⁶-956×10⁻⁶,平均值为 683×10⁻⁶;粉砂岩ΣREE 变化范围为 369×10⁻⁶-967×10⁻⁶,平均值为 617×10⁻⁶。

通过对比统计,Nb₂O₅含量变化和稀土元素相似,背景值均较高。以威宁哲觉地区 作为预测单元,初步预测该区潜在稀土氧化物资源量 200 万吨,铌氧化物资源量约 50 万吨,已形成独立超大型稀土多金属矿床。事实上,前期勘查工作已估算稀土矿资源 量约 100 多万吨(超大型矿床规模)。如果将评价区扩展到整个黔北,乃至滇东,铌、 稀土等矿产资源量潜力巨大。

		石性		合石尖兀系月京诅										
序号	半幸	TE。今号坊国(%)	样本数(件)	TFe	Ti02	V205	Nb ₂ 0 ₅	Sc	RED					
	411			(%)	(%)	(%)	(10 ⁻⁶ )	(10 ⁻⁶ )	(10 ⁻⁶ )					
		>28	1	30.1	6.46	0.14	93.0	41.0	426					
		25>TFe>28	2	27.6	4. 44	0.10	55.5	43.0	381					
		20>TFe>25	10	22.2	4.30	0.09	72.3	36.4	391					
1	玄武岩	15>TFe>20	17	17.4	4.68	0.09	61.6	39.0	396					
		10>TFe>15	36	12.2	3.86	0.08	54.3	34.1	358					
		5>TFe>10	7	8.3	3.06	0.07	41.8	25.5	283					
		0>TFe>5	2	1.7	3.36	0.07	85.0	25.5	339					
		>28	16	33.1	5.74	0.10	104.4	42.8	561					
		25>TFe>28	25	26.1	5.06	0.12	89.2	40.4	514					
		20>TFe>25	261	22.0	5. 41	0.11	76.8	41.1	501					
2	凝灰岩类	15>TFe>20	186	18.3	5.47	0.10	77.7	42.0	575					
		10>TFe>15	29	13.2	5.62	0.10	118.2	38.9	596					
		5>TFe>10	9	8.5	5.82	0.08	154.6	47.6	649					
		0>TFe>5	4	2.8	5.37	0.08	315.3	25.5	646					
		>28	120	32.9	4.10	0.11	163.4	31.4	478					
		25>TFe>28	77	26.6	4.07	0.10	189.2	35.2	581					
		20>TFe>25	158	22.5	4.76	0.09	142.2	37.3	670					
3	粘土岩类	15>TFe>20	151	17.3	4.35	0.08	188.2	34.0	583					
		10>TFe>15	152	12.5	4.28	0.08	246.8	31.7	741					
		5>TFe>10	187	7.5	3. 71	0.06	355.2	31.2	773					
		0>TFe>5	501	2.5	3.82	0.05	353.8	30.0	956					
		>28	6	30.4	2.63	0.06	128.2	38.0	390					
		25>TFe>28	12	26.8	3.42	0.08	107.8	32.3	422					
		20>TFe>25	24	21.9	3.63	0.07	132.2	34.7	476					
4	粉砂岩类	15>TFe>20	35	16.8	3. 78	0.06	133.1	31.6	654					
		10>TFe>15	46	12.6	3.60	0.06	164.4	31.4	682					
		5>TFe>10	25	8.0	3.61	0.06	190.0	30.3	729					
		0>TFe>5	17	3.3	4.04	0.05	279.8	31.6	967					
		20>TFe>25	4	22.2	3.42	0.05	104.0	36.3	372					
5	细砂岩米	15>TFe>20	10	17.0	3. 58	0.06	153.4	29.9	602					
5		10>TFe>15	10	12.6	3.61	0.05	111.8	34.3	456					
	凝灰岩类 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5>TFe>10	2	7.6	3.49	0.05	192.4	27.1	659					
6	4	-粗砂岩	15	12.1	3.15	0.06	110.2	33. 3	471					

表 5-1 贵州威宁哲觉勘查区各岩类 Nb₂O₅、Sc、ΣREE、TFe、TiO₂、V₂O₅ 背景值统计表

+

-

44.44

## 5.2 沉积过程中元素分异研究

2014年,作者以博士论文《黔西北地区稀土矿床地质地球化学特征及其成矿机制研 究》^[38]形式,系统研究了从陆相→海相、粉砂岩、粉砂岩等不同岩性中稀土多金属矿(化) 层的主量、稀土及微量元素变化。在其基础上,本节分别以稀土、铌、镓、铝、铁作为 主要指标,模拟各元素分异及示踪古沉积环境特征。

# 5.2.1 晚二叠世沉积相及采样分布情况

古地磁记录,二叠纪研究区古纬度为2.6°~4.5°S^[12-13]。从岩性上看,整个上二叠统 吴家坪阶表现为陆相碎屑岩、灰岩和煤层的组合为特征,没有蒸发岩或其他标志着干旱 的岩性沉积。从植物化石分异度、叶相特征、植物木材化石生长纹,植物群综合指标、 古地磁及古海水温度等方面的古环境综合研究成果来看,认为晚二叠世贵州西部位于南 半球低纬度地区,推测为热带-亚热带半落叶季风雨林气候区^[14-23]。

《贵州晚二叠世岩相古地理研究报告》根据岩石组合、沉积特征、剖而结构生物组 合和指相矿物,按地理位置将贵州晚二叠沉积相划分为2个相组,3个相区、4个相带、 11个相。结合研究区地质特征,贵州西部晚二叠世可划分为:(1)I、陆相组-I₁积相 区-I₁¹河流相带-I₁¹⁻¹曲流河相;(2)II海相组-II₁陆地边缘相区-II₁¹潮坪相带-II₁¹⁻¹上部 潮坪相(图 5-1)。



图 5-1 贵州西部晚二叠世岩相古地理图[.38, 66] (修改)

结合图 5-1,在已有的稀土勘查基础上,按(1)古地势逐渐由高变低,峨眉山玄武 岩厚度逐渐变薄,(2)岩相从陆相向海相过渡变化规律,在147个宣威组底部稀土多 金属矿(化)层,采样点采集样品147件(图 5-2)。



图 5-2 晚二叠世岩相古地势及稀土多金属矿点分布图^[38](修改)

本节样品主量、微量及稀土元素分析是在贵州省地质矿产中心实验室完成,分析测 试方法和仪器见 4.3。

# 5.2.2 沉积作用过程中成矿元素的分异

将上述样品测试数据,分别以稀土、铌、镓、铝、铁作为主要指标,按一定间距范 围,将各元素分别分为若干组。再求出各组元素、比值及特征值的平均值,从小到大排 列。然后,观察其他它主量、稀土及微量元素走向。同时,将16-K山5样品按玄武岩 风化亚粘土层、玄武岩风化残积层及弱风化层统计各元素平均值,用以观察沉积过程中, 玄武岩风化物的元素走向。其中,计算示踪古盐度(Sr/Ba)、古气候(CIA)、古氧化 还原条件(V/Cr、V/Sc)、古水动力条件(Zr/Rb)及古水深(Mn/Fe、Zr/Al)等元素比 值,用以示踪元素在沉积过程中系列分异现象的地质内涵。

1、Sr 与 Ba 的化学性质相近,但淡水环境中,Ba²⁺与 SO4²⁻形成 BaSO4 而发生沉淀, 与 Sr 发生分异。而 Sr 则继续迁移至大洋深处,从而可以利用锶/钡值(Sr/Ba)恢复古盐度。 通常认为: 锶/钡值(Sr/Ba)大于 1,为海洋沉积; 0.6~1 为海陆过渡的半咸水环境; 小于 0.6,为陆相微咸水或淡水环境^[67-70]。

2、古气候直接影响母岩的风化强度和沉积岩石的组成特征,而化学蚀变指数(CIA) 是古气候的有效指示参数。其计算方程为: CIA=100×Al₂O₃/(Al₂O₃+CaO+Na₂O+K₂O) ^[71]。研究结果表明,化学蚀变指数(CIA)与化学蚀变强烈成正相关性,气候就向更温暖 湿润条件转变。CIA 的具体判别标准如下:当 CIA 值介于 50~65 之间,反映较低的化学 风化程度,指示寒冷、干燥的气候条件;当 CIA 介于 65~85 之间,反映中等化学风化程 度,指示温暖、湿润的古气候;当 CIA 介于 85~100 之间,反映强烈的化学风化程度, 指示炎热、潮湿的热带亚热带条件[72]。

(3) 沉积作用过程中,伴随着机械分异作用、化学分异作用、生物化学作用,造成一些元素的聚集和分散,往往与水深度和离岸距离有相关性。比如: Mn/Fe 比值: Fe 易氧化,多在滨浅海或离岸近的地区聚集, Mn 相对 Fe 较稳定,能在远洋或离岸远的地区聚集,故 Mn/Fe 比值从海岸到深海不断增大^[73]。

Zr/Al 比值: Zr 是典型的亲陆性元素,以机械迁移为主,沉积于离岸较近的地区, 指示物源区远近,越远离陆源区,岩石中含量越低。但沉积岩中 Zr 元素的分布受 Al 元 素支配,因此 Zr/Al 的比值更能代表近距离搬运的陆源组分及水体深度的变化,其值越 大,表示离岸越远,水体更深^[73]。

(5)海相环境中 V 以不同价态形式存在于不同的氧化还原条件下,缺氧环境下为 五价 V 离子 (HVO4²⁻ 或 H₂VO4²⁻)、中等还原环境下为四价 V 离子 (VO²⁻)及强还原 环境下为钒氧化物 (V₂O₃)^[74]。而 Sc 与 Cr 都为受陆源碎屑输入影响较大的微量元素, 因此 V/Sc 与 V/Cr 常用于判断古海洋环境下氧化还原体条件^[75-77]。一般认为: V/Sc 比 值: <9,有氧环境; 9~30,贫氧环境; >30,缺氧环境,V/Cr 比值: <2,有氧环境; 2~4.25,贫氧环境; >4.25,缺氧环境。

(5) Zr/Rb 可以做水动力强弱变化的指标,该指标在水体相对振荡时呈高值,水体能量低且安静环境下则呈低值^[78]。

(6) δCe 与δEu 能有效评价沉积环境的地球化学特征:

正负 Eu 异常与 Eu²⁺-Eu³⁺平衡密切相关, Eu²⁺富集则表现为正 Eu 异常, 反之 Eu³⁺ 富集则为负 Eu 异常。在高温环境下(>250℃), Eu 以 Eu²⁺形式存在;此外, Eu²⁺ 只会在强还原强碱性条件下存在, 该类条件一般为海相沉积物中缺氧、不再发生硫酸盐 还原作用的孔隙水环境^[79]。

而δCe 常作为沉积岩形成时期氧化还原条件的判断指标。Ce 作为变价元素,在还 原环境下主要以 Ce³⁺为主赋存在水体中,沉积物中呈现负异常,在氧化环境下 Ce³⁺逐 渐变为 Ce⁴⁺,沉淀而造成沉积物中呈现正异常或不明显的负异常^[80-81]。

一、按成矿元素走向模拟各元素分异特征

## (一)按稀土总量走向模拟各元素分异特征

将 147 件样品,按稀土总量从低到高分为 14 个组,分别求出各组元素、比值及特征值平均值(表 5-2),可以总结出如下规律:

116

1、TREO 由低到高,各稀土元素氧化物、P₂O₅、Sr、Sr/Ba、La_N/Yb_{N、}及SiO₂变化 趋势与 TREO 变化趋势一致,而 TFe₂O₃、TiO₂、δEu、δCe、Cr、Sc 及 V 趋势大致相反, Al₂O₃ Li 先富集再流失。

2、与玄武岩风化亚粘土层比较而言,各元素及氧化物平均富集系数按大小依次为: 5.00 > Nd₂O₃ > Sr > La₂O₃ > Sm₂O₃ > Gd₂O₃ > Tb₄O₇ > Pr₆O₁₁ > 4.00 > Dy₂O₃ > HO₂O₃ > Tm₂O₃ > Yb₂O₃ > Er₂O₃ > 3.00 > Hf > Sn > Y₂O₃ > Ta > Th > U > CeO₂ > Nb₂O₅ > Eu₂O₃ > Zr > CaO > 2.00 > Li > W > Ga > Al₂O₃ > Cr > Na₂O > K₂O > Ba > 1.00 > TiO₂ > MgO > SiO₂ > 0.90 > Sc > P₂O₅ > 0.80 > V > TFe₂O₃ > 0.70 > MnO > Rb > 0.30 > Lu₂O₃ > Cs > 0.05; 与玄武 岩风化残积层比较而言,各元素及氧化物平均富集系数按大小依次为 Th (5.19) > U (4.31) > W > Sn > Ta > Hf > 3.00 > Li > Nb₂O₅ > CeO₂ > Zr > Yb₂O₃ > Tm₂O₃ > 2.00 > Al₂O₃ > Ga > Sr > Er₂O₃ > La₂O₃ > HO₂O₃ > Cr > Dy₂O₃ > Tb₄O₇ > Nd₂O₃ > Pr₆O₁₁ > Sm₂O₃ > Gd₂O₃ > Y₂O₃ > 1.00 > Sc > P₂O₅ > TiO₂ > 0.90 > V > TFe₂O₃ > SiO₂ > 0.80 > Eu₂O₃ > MnO > CaO > Na₂O (0.20) > Cs > Ba > K₂O > MgO > Lu₂O₃ > Rb (0.06) ; 各稀土氧化 物相对玄武岩风化物而言,富集系数存在一定变化而存在分异,总体富集 1-5 倍,而 Ga 平均富集 1-2 倍,Nb₂O₅ 平均富集 2-3 倍。其中,相对于玄武岩风化亚粘土层而言, 仅 Sc 发生贫化;而相对玄武岩风化残积层而言,Sc、Eu₂O₃ 和 Lu₂O₃ 在沉积过程中发生 亏损。即,伴随稀土总量的富集,Sc、Eu₂O₃ 和 Lu₂O₃ 发生流失,而与其它稀土元素发 生分异。

3、稀土富集与古沉积环境的关系

(1) 古气候指标 CIA 变化范围为 94.7-98.9, 指示古气候炎热、潮湿。

(2) 古水深指标 Mn/Fe 和 Zr/Al 变化范围分别为 0.004-0.020 和 0.004-0.011, 代表 离岸较近的环境。

(3) 古水动力条件 Zr/Rb 变化范围 50.5-347,属于水动力震荡的环境。特别地,总体而言,水动力条件越强,海水与玄武岩风化物充分接触,利于稀土浸出。同时,Zr/Rb 值越大,对应的 Sn、ZrO₂、Nb₂O₅、HfO₂、Ta₂O₅含量越高,由于重力分异,这些重矿物得到近一步富集。

(4) 古盐度 Sr/Ba 变化范围为 0.13-2.55, 表明稀土多金属矿(化层) 在海洋沉积、海陆过渡的半咸水环境及陆相微咸水或淡水等环境均有发育。但古盐度 Sr/Ba 越大, TREO 越大,海水中富含 Na⁺、K⁺等阳离子,能够交换并浸取出玄武岩风化物中的稀土离子,进入到海水中。其中, TREO 富集段, Sr/Ba 主要在 1.00 左右; 而 Sr/Ba 为 2.55

时,TREO 富集;表明TREO 主要在海陆过渡的半咸水环境发生富集,局部在海相环境发生富集。

(5) 古氧化还原指标 V/Cr 和 V/Sc 趋势与稀土趋势大体相似,变化范围分别为 2.15-5.42 和 12.1-17.6,代表由贫氧环境向还原环境变化,TREO 越富集。特别地, δEu 和δCe 随 TREO 变高,显示总体降低趋势,亦代表由贫氧环境向还原环境变化,TREO 变高的地质内涵。同时,La_N/Yb_N随稀土总量变高,显示总体增高趋势,代表轻稀土元 素富集程度相对较高。

## 第5章 沉积分异阶段研究

序号	件	<b>TREO区间</b>	TREO	TLREO	TMREO	THREO	Al ₂ O ₃	SiO ₂	TFe ₂ O3	TiO ₂	K ₂₀	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	古盐度	古气候 条件	古氧 原	化还 针	古水动 力条件	古才	彩
								(10	² )	an an a							Sr/Ba	CIA	V/Cr	V/Sc	Zr/Rb	Mn/Fe	Zr/Al
1	2	6000-7162	6686	5378	662	647	30.7	35.8	11.8	4.43	0.13	0.06	0.16	0.34	0.82	0.04	2.55	98.9	5.42	17.6	347	0.004	0.008
2	7	2000-4000	2457	1900	244	313	31.4	33.2	14.2	4.64	0.45	0.07	0.13	0.41	0.45	0.06	0.97	98.0	4.64	14.8	69.2	0.005	0.004
3	14	1500-2000	1592	1246	143	204	33.7	32.9	12.5	4.27	0.21	0.07	0.48	0.42	0.32	0.07	1.22	97.8	4.84	14.6	103	0.006	0.004
4	11	1300-1500	1342	976	144	222	33.6	36.8	8.99	3.93	0.56	0.11	0.14	0.31	0.28	0.17	1.07	97.6	3.71	13.9	67.1	0.020	0.005
5	9	1000-1300	1116	797	123	195	36.7	29.2	11.1	5.78	0.48	0.08	0.12	0.28	0.15	0.03	0.82	98.2	5.06	16.1	130	0.003	0.007
6	7	900-1000	942	698	98.7	145	33.3	34.1	12.2	4.40	0.45	0.09	0.14	0.36	0.21	0.04	0.97	98.0	3.87	15.0	94.4	0.004	0.005
7	14	800-900	847	591	95.8	161	36.4	33.0	9.81	4.93	0.41	0.08	0.11	0.36	0.18	0.05	0.94	98.4	4.16	13.2	134	0.006	0.006
8	12	700-800	754	531	86.7	136	38.5	31.4	8.96	5.76	0.45	0.10	0.12	0.28	0.15	0.04	0.70	98.3	3.53	14.2	97.7	0.005	0.005
9	17	600-700	645	468	69.2	107	32.1	30.4	15.1	5.37	0.46	0.08	0.17	0.59	0.19	0.09	0.45	97.8	2.81	12.7	77.3	0.006	0.005
10	16	500-600	554	376	70.0	109	32.1	27.5	16.5	6.66	0.41	0.09	0.15	0.54	0.22	0.08	0.38	98.0	3.68	12.4	111	0.006	0.006
11	8	400-500	452	346	45.3	60.6	24.1	25.0	27.0	4.92	0.21	0.07	0.14	0.64	0.14	0.06	0.38	98.3	3.72	12.8	147	0.002	0.006
12	15	300-400	345	229	44.2	71.5	31.0	30.8	15.4	5.85	1.13	0.10	0.14	0.64	0.24	0.14	0.11	95.8	3.42	12.5	51.2	0.010	0.005
13	9	200-300	253	181	29.1	42.4	21.4	24.3	28.2	6.62	0.31	0.06	0.32	0.96	0.24	0.10	0.22	96.9	2.94	13.7	184	0.004	0.011
14	6	180-200	188	140	17.4	31.0	24.6	25.9	23.4	4.97	1.12	0.13	0.13	0.51	0.14	0.09	0.13	94.7	2.15	12.1	50.5	0.005	0.007
15	5	玄武岩风化亚 黏土层	385	289	33.7	61.9	21.4	34.2	21.0	5.63	0.42	0.07	0.09	0.52	0.32	0.20	0.17	97.4	6.29	15.1	14.5	0.011	0.004
16	5	玄武岩风化残 积层	875	593	123	158	16.6	38.4	18.4	5.67	2.80	0.41	0.46	2.65	0.27	0.18	0.07	81.9	5.71	15.5	2.31	0.011	0.004
17	3	弱风化玄武岩	388	256	52.4	80.1	14.7	41.6	17.0	5.15	2.39	1.59	1.07	3.29	0.28	0.20	0.08	74.4	4.76	14.9	6.25	0.013	0.006

## 表 5-2 按稀土氧化物总量(TREO)走向模拟各元素分异及示踪古沉积环境特征统计表

中国将子阮地场化子91几月 - 日1910 - 1111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 -
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

序号	件	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	$Nd_2O_3$	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	<b>Y</b> ₂ <b>O</b> ₃	La _N /Yb _N	δEu	δCe
	- 1983) 		A-1					. 8	(10 ⁻⁶ )				a						
1	2	1450	2194	355	1378	260	22.2	220	31.4	127	27.0	68.9	10.7	57.7	9.84	473	2.30	0.44	0.70
2	7	528	731	147	494	88.5	14.0	77.4	12.4	51.6	11.9	29.3	4.59	24.6	4.22	239	1.96	0.79	0.60
3	14	321	561	82.0	281	51.1	8.05	45.6	7.04	31.4	7.32	18.3	2.97	16.2	2.73	156	1.82	0.78	0.80
4	11	260	379	77.6	260	49.0	7.63	43.8	7.77	36.2	8.30	20.4	3.41	18.7	3.13	168	1.28	0.77	0.61
5	9	207	352	51.4	187	42.0	5.99	37.8	6.39	30.9	6.87	15.8	2.51	13.3	2.22	155	1.43	0.70	0.78
6	7	174	315	46.7	162	32.6	5.32	30.1	5.37	25.3	5.59	13.2	2.17	12.0	2.01	110	1.32	0.80	0.81
7	14	158	254	41.3	137	30.9	5.15	28.6	5.21	25.9	5.96	14.5	2.49	14.2	2.35	121	1.02	0.81	0.72
8	12	137	232	34.9	126	27.2	5.40	27.0	4.73	22.4	4.92	11.5	1.85	10.1	1.67	106	1.25	0.93	0.77
9	17	119	211	31.0	107	22.3	4.29	21.2	3.70	17.7	4.00	9.46	1.55	8.42	1.40	82.4	1.29	0.93	0.80
10	16	85.0	181	23.3	86.0	22.3	4.67	21.2	3.79	17.9	3.99	9.29	1.49	7.99	1.34	84.7	0.97	1.01	0.94
11	8	85.0	154	25.2	81.4	16.4	2.77	13.9	2.20	10.0	2.23	5.45	0.89	4.77	0.80	46.5	1.63	0.86	0.77
12	15	50.4	107	15.1	56.6	13.8	3.11	13.5	2.40	11.4	2.56	6.03	0.98	5.24	0.88	55.8	0.88	1.07	0.89
13	9	35.4	88.6	12.8	44.3	10.0	2.04	8.96	1.49	6.62	1.49	3.49	0.58	3.10	0.54	33.2	1.05	1.01	0.96
14	6	31.6	73.4	8.22	26.2	5.46	1.18	5.57	0.90	4.33	1.02	2.47	0.43	2.42	0.42	24.3	1.20	1.00	1.05
15	5	56.0	167	16.3	50.3	10.7	2.78	10.2	1.67	8.38	1.95	4.90	0.78	4.25	0.73	49.3	1.21	1.25	1.27
16	5	169	158	58.8	207	42.0	12.6	38.6	5.68	24.6	4.86	10.5	1.34	6.46	1.00	134	2.40	1.46	0.36
17	3	63.0	98.0	21.0	73.7	16.3	5.50	16.0	2.60	12.0	2.53	5.60	0.78	3.93	0.63	66.7	1.47	1.59	0.62

续表 5-2 按稀土氧化物总量(TREO)走向模拟各元素分异及示踪古沉积环境特征统计表

序号	件	Sn	ZrO ₂	Nb ₂ O ₅	HfO ₂	Ta ₂ O ₅	Cr	Ba	Li	Rb	Sc	Sr	v	Ga	Cs	w	Th	U
1	2	25.2	1695	393	65.2	28.2	70.6	162	48.4	3.62	21.8	412	383	109	0.20	2.80	34.1	19.6
2	7	9.90	1006	205	34.4	13.0	94.2	263	43.8	10.8	29.5	256	436	64.4	0.26	3.08	19.3	6.43
3	14	11.1	1037	239	34.9	13.5	76.6	149	32.9	7.42	25.5	182	371	53.4	0.63	3.03	26.8	8.46
4	11	12.3	1158	237	41.2	14.5	96.9	118	45.8	12.8	25.8	126	359	49.5	0.49	5.12	24.9	6.70
5	9	20.4	1781	397	59.7	25.1	91.8	128	42.6	10.2	28.9	105	464	56.4	0.35	2.62	36.6	7.81
6	7	11.3	1202	243	39.7	15.4	95.6	157	77.9	9.42	24.6	152	370	54.8	0.26	3.02	26.2	7.46
7	14	15.6	1512	325	50.6	21.1	96.6	94	54.6	8.35	30.5	87.6	402	51.4	0.25	3.94	32.6	8.21
8	12	15.4	1318	304	45.0	19.4	138	139	53.7	9.99	34.3	98.0	486	51.6	0.37	3.85	35.3	9.20
9	17	10.5	1040	227	34.6	13.4	155	179	41.9	9.97	34.2	80.4	435	54.5	0.36	3.41	23.7	6.74
10	16	13.7	1414	293	43.0	19.4	135	179	46.4	9.44	40.0	67.8	497	63.2	0.36	3.83	34.0	7.88
11	8	10.0	1035	215	34.0	13.4	123	154	47.7	5.22	35.6	58.8	457	66.8	0.14	1.62	24.7	7.71
12	15	11.7	1205	241	38.2	14.5	138	357	42.5	17.4	37.9	38.4	473	57.0	0.48	2.50	20.0	5.21
13	9	15.2	1750	335	55.1	24.6	182	194	35.6	7.04	39.0	43.1	536	80.2	0.24	1.63	38.6	7.31
14	6	11.9	1302	239	40.5	16.4	137	409	34.0	19.1	24.4	54.9	295	54.7	0.57	1.06	26.0	6.99
15	5	4.9	620	31.0	15.5	6.7	84.7	158	27.3	31.7	35.3	26	533	39.80	5.40	1.83	11.4	3.4
16	5	3.7	527	32.8	13.5	5.3	84.7	1005	15.6	169	31.1	66	484	32.82	1.93	0.78	5.6	1.9
17	3	3.6	683	31.0	14.8	5.0	95.9	1674	13.7	80.9	30.6	132	457	31.03	0.56	0.72	6.0	1.7

续表 5-2 按稀土氧化物总量(TREO)走向模拟各元素分异及示踪古沉积环境特征统计表

### 二、按铌走向模拟各元素分异特征

将 147 件样品, 按五氧化二铌 (Nb₂O₅) 从低到高分为 10 个组, 分别求出各组元素、 比值及特征值平均值(表 5-3), 可以总结出如下规律:

 Nb₂O₅含量由低到高,Zr/Rb、Zr/Al、δCe、Sn、ZrO₂、HfO₂、Ta₂O₅、Ga、Th、 及U变化趋势与其变化趋势一致,而 P₂O₅、δEu 及 Sr 趋势大致相反,Li、Al₂O₃、Sr/Ba 先富集再流失。

2、与玄武岩风化亚粘土层比较而言,各元素及氧化物平均富集系数按大小依次为: Sr(3.54) > HfO₂ > Tb₄O₇ > Ta₂O₅ > Sn > Sm₂O₃ > Dy₂O₃ > Nd₂O₃ > Gd₂O₃ > HO₂O₃ > Tm₂O₃ > Yb₂O₃ > La₂O₃ > Tn > Er₂O₃ > 3.00 > Nb₂O₅ > Y₂O₃ > ZrO₂ > U(2.48) > Eu₂O₃ (1.97) > CaO > W > CeO₂ > Li > Ga > Al₂O₃ > Cr > Na₂O > K₂O > Ba > 1.00 > TiO₂ > Sc > SiO₂ > 0.90 > MgO > 0.80 > V > 0.70 > TFe₂O₃ > P₂O₅ > MnO > 0.30 > Cs(0.07); 与玄武岩风 化残积层比较而言,各元素及氧化物平均富集系数按大小依次为 Th(6.29) > U(4.63) > Sn > W > Ta₂O₅ > 4.00 > HfO₂ > Nb₂O₅ > ZrO₂ > Li > 3.00 > Lu₂O₃(2.27) > Yb₂O₃ > Al₂O₃ > 2.00 > Ga > CeO₂ > Tm₂O₃ > Cr > Er₂O₃ > Sr > HO₂O₃ > Dy₂O₃ > La₂O₃ > Sc > Tb₄O₇ > 1.00 > Y₂O₃ > TiO₂ > 0.90 > V > Gd₂O₃ > Sm₂O₃ > SiO₂ > 0.80 > Nd₂O₃ > P₂O₅ > TFe₂O₃ > 0.70 > Eu₂O₃(0.44) > MnO > CaO > 0.30 > Na₂O > K₂O > Cs > Ba > MgO(0.17); 各稀土氧化物相对 玄武岩风化物而言,富集系数存在一定变化而存在分异,而Ga 平均富集 1-2 倍,Nb₂O₅ 平均富集 2-3 倍。其中,相对于玄武岩风化亚粘土层而言,仅 Sc 发生轻微贫化;而相 对玄武岩风化戏积层而言,Sc、Y₂O₃、Gd₂O₃、Sm₂O₃、Nd₂O₃、Eu₂O₃和Lu₂O₃在₂O₃ 和Lu₂O₃ Eu₂O₃ 和Lu₂O₃ Cu₂O₃ = Lu₂O₃ Nd₂O₃ = Co₂ + Co₂ + Ca₂ + Ca₂

3、Nb2O5富集与古沉积环境的关系

(1) 古气候指标 CIA 变化范围为 96.5-98.9, 指示古气候炎热、潮湿。

(2) 古水深指标 Mn/Fe 和 Zr/Al 变化范围分别为 0.004-0.009 和 0.003-0.017, 代表 离岸较近的环境。

(3) 古水动力条件 Zr/Rb 变化范围 26.2-367, 属于高能的水动力震荡环境。特别地, 总体而言,水动力条件越强,Nb₂O₅含量总体越高。同时,Zr/Rb 值越大,对应的 Sn、 ZrO₂、HfO₂、Ta₂O₅、Ga、Th 及 U 含量越高,由于重力分异,这些重矿物得到近一步富 集。

122

(4) 古盐度 Sr/Ba 变化范围为 0.22-0.80, Nb₂O₅ 富集主要在海陆过渡的半咸水环境 和陆相微咸水或淡水环境发育,随着 Nb₂O₅ 含量增高,但古盐度 Sr/Ba 先由 0.33 变大到 0.80,再变小至 0.22。其中,Nb₂O₅ 最富集段 Sr/Ba 小于 0.60,表明 Nb₂O₅ 的富集发生于 陆相微咸水或淡水环境发育,在海相环境时,与稀土发生分异。

(5) 古氧化还原指标 V/Cr 和 V/Sc 趋势与 Nb₂O₅ 趋势大体相反,变化范围分别为 2.61-5.56 和 8.84-17.0,代表由还原环境向贫氧环境变化,Nb₂O₅越来越富集。特别地, δEu 随 Nb₂O₅ 变高,显示总体降低趋势,δCe 随 Nb₂O₅ 变高,显示总体升高趋势,亦代 表由还原环境向贫氧环境变化的地质内涵。同时,La_N/Yb_N 随 Nb₂O₅ 变高,显示总体降 低趋势,代表随 Nb₂O₅升高,轻稀土元素亏损,重稀土富集。

序号	件	Nb ₂ O₅含 量区间	Nb ₂ O ₅	Al ₂ O ₃	SiO2	TFe ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	古盐度	古气候 条件	古氧 原新	化还 条件	古水动 力条件	古オ	k深
	02	(10	⁶ )					(10	² )					Sr/Ba	CIA	V/Cr	V/Sc	Zr/Rb	Mn/Fe	Zr/Al
1	5	700-970	798	29.2	35.7	12.9	5.50	0.56	0.11	0.13	0.48	0.09	0.05	0.22	97.3	2.61	12.9	241	0.005	0.017
2	12	500-700	572	41.1	20.3	12.9	8.36	0.26	0.06	0.12	0.44	0.18	0.06	0.49	98.9	2.61	10.7	367	0.005	0.009
3	13	400-500	450	44.2	27.2	7.0	5.69	0.70	0.10	0.10	0.28	0.10	0.03	0.59	98.0	2.87	8.84	131	0.005	0.007
4	7	350-400	377	38.0	35.6	6.0	5.53	0.68	0.11	0.11	0.28	0.13	0.02	0.70	97.7	3.44	10.7	108	0.004	0.007
5	16	300-350	328	36.1	30.7	11.7	4.88	0.59	0.10	0.13	0.48	0.14	0.04	0.48	97.8	2.84	13.3	104	0.004	0.006
6	18	250-300	268	33.4	30.1	15.5	4.56	0.37	0.08	0.12	0.52	0.17	0.07	0.80	98.3	3.81	13.3	89.7	0.005	0.005
7	15	200-250	222	30.1	33.0	16.0	3.92	0.66	0.09	0.34	0.46	0.24	0.13	0.80	96.5	3.78	17.0	58.6	0.009	0.005
8	15	150-200	176	30.4	36.9	11.8	4.28	0.80	0.11	0.16	0.39	0.20	0.07	0.57	96.6	3.07	14.3	46.2	0.007	0.004
9	26	100-150	123	25.2	31.4	19.4	5.68	0.36	0.07	0.14	0.46	0.32	0.08	0.55	97.8	3.97	16.1	51.8	0.005	0.003
10	20	49-100	83.2	24.9	29.7	21.75	5.21	0.52	0.08	0.27	0.80	0.42	0.16	0.33	96.6	5.56	14.2	26.2	0.008	0.003
11	5	玄武岩风化 亚黏土层	117	21.4	34. 2	21.0	<mark>5.</mark> 63	0. 42	0.07	0.09	0.52	0.32	0.20	0.17	97.4	6.29	15.1	14.5	0.011	0.004
12	5	玄武岩风化 残积层	99.2	16.6	38.4	18.4	5.67	2.80	0. 41	0.46	2.65	0. 27	0.18	0.07	81.9	5.71	15.5	2.3	0.011	0.004
13	3	弱风化玄武 岩	86.6	14.7	41.6	17.0	5. 15	2.39	1.59	1.07	3. 29	0. 28	0.20	0.08	74.4	4.76	14.9	6.2	0.013	0.006

表 5-3 按五氧化二铌走向模拟各元素分异及示踪古沉积环境特征值统计表

## 第5章 沉积分异阶段研究

|--|

序号	件	Nb₂O₅含 量区间	TREO	TLREO	TMREO	THREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	<b>Y</b> ₂ <b>O</b> ₃	La _N /Yb _N	δEu	δCe
											(10	⁶ )		_						10				
1	5	110-137	977	456	172	348	93	184	30	150	55	7.4	50	9.5	50	11.4	26.9	4.54	24.9	4.14	276	0.34	0.66	0.80
2	12	100-110	1199	863	148.8	188	194.9	406	57.9	204.0	54.9	6.12	46.7	7.60	33.5	7.30	17.70	2.86	15.40	2.57	141.7	1.16	0.57	0.88
3	13	90-100	737	515	80.8	142	129	253	30.1	103	24.9	4.15	24.9	4.54	22.2	4.98	11.6	1.90	10.24	1.69	111	1.15	0.78	0.93
4	7	80-90	927	740	77	109	217	353	45.3	125	23.2	3.91	25.7	4.35	20.2	4.50	10.9	1.89	10.8	1.80	79	1.83	0.75	0.82
5	16	70-80	832	569	90.8	172	149	249	40.2	130	25.8	4.14	26.8	5.42	28.7	6.92	17.3	3.00	16.4	2.78	125.5	0.84	0.74	0.74
6	18	60-70	1046	806	95.6	144	222	341	55.8	187	32.5	4.30	29.6	4.99	24.3	5.64	14.04	2.38	13.40	2.22	106.5	1.52	0.65	0.70
7	15	50-60	1073	777	109	187	208	322	53.7	193	35.7	5.68	33.0	5.85	28.5	6.74	16.7	2.74	14.8	2.50	144	1.28	0.77	0.70
8	15	40-50	1142	916	96.5	129	259	378	61.6	218	34.0	5.40	31.5	4.77	20.8	4.65	11.2	1.75	9.5	1.62	100	2.50	0.77	0.69
9	26	<u>30-40</u>	796	584	87.7	124	151.4	244	42.5	146.7	30.1	6.05	27.5	4.50	19.6	4.48	10.61	1.65	8.58	1.48	96.8	1.61	0.99	0.70
10	20	20-30	840	587	101.8	151	141	231	45.8	168.8	34.1	7.67	30.8	5.36	23.9	5.57	13.3	2.09	11.0	1.93	117	1.17	1.11	0.66
11	5	玄武岩风 化亚黏土	385	289	<mark>33.</mark> 7	61.9	56.0	167	16.3	50.3	10.7	2.78	10.2	1.67	8.38	1.95	4.90	0.78	4.25	0.73	49.3	1.21	1.25	1.27
12	5	玄武岩风 化残积层	<b>8</b> 75	593	123	158	169	158	58.8	207	42.0	12.6	38.6	5.68	24.6	4.86	10.5	1.34	6.46	1.00	134	2.40	1.46	0.36
13	3	弱风化玄 武岩	388	256	52.4	80.1	63.0	98.0	21.0	73.7	16.3	5.50	16.0	2.60	12.0	2.53	5.60	0.78	3.93	0.63	66.7	1.47	1.59	0.62

				(狭衣 )-	い技工	▲化—1	兆正円1	吴拟合之	兀系刀	开风不	际古게	、积坏児	特征证	统计衣				
序号	件	Nb2O5含 里区间	Sn	ZrO ₂	HfO ₂	Ta ₂ O ₅	Cr	Ba	Li	Rb	Sc	Sr	v	Ga	Cs	w	Th	U
									(	10 ⁻⁶ )								
1	5	110-137	35.8	3513	124.1	55.7	138.3	197.3	36.9	10.79	27.8	42.5	360	96.04	0.28	1.9	80.7	11.1
2	12	100-110	25.3	2672	86.1	39.3	173.2	147.0	34.2	5.39	42.1	71.6	452	68.40	0.14	2.7	56.30	14.6
3	13	90-100	24.2	2223	75.3	30.2	106.2	122.2	49.1	12.60	34.5	71.7	305	57.17	0.26	3.6	50.07	9.8
4	7	80-90	17.9	1802	61.3	23.8	119.0	111.0	69.6	12.40	38.5	78.2	410	57.87	0.25	5.6	37.23	10.1
5	16	70-80	17.1	1636	55.5	22.0	134.6	179.9	64.4	11.6	28.6	86	382	60.89	0.25	3.3	35.78	8.7
6	18	60-70	13.6	1196	40.1	16.5	98.1	136.5	59.1	9.87	28.0	110	374	68.16	0.40	4.2	31.11	9.1
7	15	50-60	10.5	974	33.8	13.0	96.8	185.3	47.4	12.3	21.5	148	366	56.68	0.46	2.7	22.01	6.5
8	15	40-50	9.1	904	28.5	10.0	116.8	214.9	38.8	14.5	25.1	122	359	59.75	0.60	2.3	20.05	6.3
9	26	30-40	5.5	590	17.5	6.8	136.0	191.2	36.6	8.4	33.6	104.8	540	48.49	0.38	2.1	11.51	4.7
10	20	20-30	4.1	472	13.2	4.8	106.5	298.8	34.8	13.36	41.9	97.6	593	47.34	0.47	4.5	7.6	3.0
11	5	玄武岩风 化亚黏土	4.9	620	15.5	6.7	84.7	158	27.3	3 <mark>1.7</mark>	35.3	26	533	39.80	5.40	1.83	11.4	3.4
12	5	玄武岩风 化残积层	3.7	527	13.5	5.3	84.7	1005	15.6	169	31.1	66	484	32.82	1.93	0.78	5.6	1.9
13	3	弱风化玄武岩	3.6	683	14.8	5.0	95.9	1674	13.7	80.9	30.6	132	457	31.03	0.56	0.72	6.0	1.7

续表 5-3 按五氧化二铌走向模拟各元素分异及示踪古沉积环境特征值统计表

中国科学院地球化学研究所博士后研究工作报告

### 三、按镓走向模拟各元素分异特征

将 147 件样品,按镓(Ga)从低到高分为 10 个组,分别求出各组元素、比值及特征值平均值(表 5-4),可以总结出如下规律:

1、Ga含量由低到高,Zr/Al和Li与其变化趋势一致,Al₂O₃和TiO₂与其趋势大致相反。在Al₂O₃富集过程中,稀土元素也存在富集情况,大多是在Sr/Ba较高的情况。而Nb₂O₅、ZrO₂、HfO₂、Ta₂O₅、Ga、Th及U在Zr/Rb比值较高的区段得到富集。

2、与玄武岩风化亚粘土层比较而言,各元素及氧化物平均富集系数按大小依次为: Nd₂O₃(3.99) > Gd₂O₃ > Tb₄O₇ > La₂O₃ > Dy₂O₃ > Sr > Pr₆O₁₁ > HO₂O₃ > Sn > Tm₂O₃ > Yb₂O₃ > HfO₂ > Er₂O₃ > Ta(3.30) > Nb₂O₅(2.85) > U > Y₂O₃ > Zr > CeO₂ > Eu₂O₃(2.09) > CaO(1.98) > Ga > Li > W > Al₂O₃ > Cr > Na₂O > K₂O > Ba(1.00) > MgO(0.97) > TiO₂ > Sc > SiO₂ > TFe₂O₃ > V > P₂O₅(0.68) > MnO(0.35) > Rb(0.30) > Cs(0.06)。与玄武岩风化残积层比较而 言,各元素及氧化物平均富集系数按大小依次为U(4.99) > Sn > Ta₂O₅(4.11) > HfO₂(3.86) > W > Nb₂O₅(3.36) > ZrO₂(2.94) > Li > CeO₂ > Yb₂O₃ > Al₂O₃ > Ga(2.04) > Tm₂O₃(1.99)) > Er₂O₃ > Sr > HO₂O₃ > Cr > La₂O₃ > Dy₂O₃ > Tb₄O₇ > Sm₂O₃ > Gd₂O₃ > Y₂O₃ (1.01) > Sc (0.99) ) > Nd₂O₃ > Pr₆O₁₁ (0.96) > TiO₂ (0.89) > TFe₂O₃ > P₂O₅ (0.80) > V (0.78) > SiO₂ (0.73) > Eu₂O₃(0.46) > MnO > CaO (0.36) > Na₂O > MgO > Cs > Ba > K₂O (0.16) > Rb (0.06) 。 伴随镓的富集,各稀土元素氧化物相对玄武岩风化物而言,富集系数存在一定变化而存在分异,总体富集1-4倍,而Nb₂O₅平均富集2.85-3.36倍。其中,相对于玄武岩风化亚粘土层而言,仅Sc 发生轻微贫化;而相对玄武岩风化残积层而言,Nd₂O₃ Pr₆O₁₁、Eu₂O₃和Sc 在沉积过程中发生亏损。即,伴随 Ga 的富集,Nd₂O₃,Pr₆O₁₁、Eu₂O₃ 和 Sc 在沉积过程中发生亏损。

3、Ga富集与古沉积环境的关系

(1) 古气候指标 CIA 变化范围为 96.2-99.1, 指示古气候炎热、潮湿。

(2) 古水深指标 Mn/Fe 和 Zr/Al 变化范围分别为 0.003-0.009 和 0.004-0.012, 代表 离岸较近的环境。

(3) 古水动力条件 Zr/Rb 变化范围 42-577,属于高能震荡的水动力环境。特别地, 总体而言,伴随水动力条件越强,Ga 总体越高,Nb₂O₅、ZrO₂、HfO₂、Ta₂O₅、Ga、Th、及 U具有相似性质。

(4) 古盐度 Sr/Ba 变化范围为 0.23-1.98, 但 Ga 的富集与 Sr/Ba 的关系并不明显,

127

在海洋沉积、海陆过渡的半咸水环境及陆相微咸水或淡水等环境均有发育。

(5) 古氧化还原指标 V/Cr 和 V/Sc 变化范围分别为 2.73-5.90 和 7.81-15.8, 与 Ga 富集总体呈负相关关系,代表由贫氧环境向还原环境变化,Ga 越来越富集。特别地, δEu 随 Ga 变高,显示总体降低趋势, δCe 随 Ga 变高,显示总体升高趋势,亦代表由还 原环境向贫氧环境变化的地质内涵。同时,La_N/Yb_N 随 Ga 变高,存在多个高值区,且 与 Zr/Rb 高值区吻合。

# 第5章 沉积分异阶段研究

	a		10							-								p		
予号	件	Ga含量 区间	Ga	Al ₂ O ₃	SiO ₂	TFe ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	古盐度	古气候 条件	古氧 原新	化还 €件	古水动 力条件	古オ	深
10		(10	⁻⁶ )					(10 ⁻² )						Sr/Ba	CIA	V/Cr	V/Sc	Zr/Rb	Mn/Fe	Zr/Al
1	6	110-137	137	31.3	37.2	<b>11</b> .7	2.24	0.27	0.06	0.12	0.35	0.41	0.05	1.09	98.6	2.73	8.60	338	0.004	0.012
2	4	100-110	103	23.6	24.5	28.7	4.72	0.13	0.05	0.10	0.80	0.11	0.12	0.23	98.9	2.71	14.7	577	0.005	0.009
3	7	90-100	96.0	26.2	26.7	23.9	4.99	0.28	0.08	0.11	0.91	0.15	0.09	0.25	98.2	3.14	13.8	252	0,004	0.010
4	12	80-90	84.6	32.0	33.4	13.2	5.47	0.45	0.08	0.12	0.48	0.24	0.05	0.94	98.0	3.04	11.09	131	0.004	0.007
5	9	70-80	74.3	29.9	30.2	18.2	4.93	0.43	0.10	0.24	0.69	0.18	0.06	0.79	97.5	3.53	13.7	61	0.004	0.005
6	16	60-70	64.3	29.7	30.2	17.7	5.41	0.32	0.08	0.13	0.45	0.21	0.10	0.80	98.2	3.82	14.7	129	0.006	0.006
7	26	50-60	54.8	31.0	34.5	12.9	4.49	0.56	0.08	0.13	0.45	0.31	0.07	0.51	97.6	4.37	15.8	57	0.006	0.004
8	43	40-50	44.3	32.6	33.7	12.0	5.23	0.62	0.09	0.20	0.38	0.23	0.08	0.55	97.3	4.55	14.1	61	0.008	0.004
9	15	30-40	34.8	31.7	26.7	18.1	5.00	0.99	0.11	0.16	0.55	0.22	0.13	0.26	96.2	2.31	12.1	42	0.008	0.005
10	6	20-30	26.8	50.5	17.8	8.39	6.28	0.40	0.08	0.41	0.37	0.13	0.02	0.94	98.3	3.04	8.77	169	0.003	0.006
11	3	10-20	16.3	60.0	14.4	1.98	6.91	0.38	0.07	0.12	0.14	0.17	0.02	1.98	99.1	5.90	7.81	176	0.009	0.005
12	5	玄武岩风化 亚黏土层	31.0	21.4	34. 2	21.0	5.63	0.42	0.07	0.09	0.52	0. 32	0.20	0.17	97.4	6.29	15.1	14	0.011	0.004
13	5	玄武岩风化 残积层	32.8	16.6	38.4	18.4	5.67	2.80	0.41	0.46	2.65	0. 27	0.18	0.07	81.9	5.71	15.5	2	0.011	0.004
14	3	弱风化玄武 岩	31.0	14. 7	41.6	17.0	5. 15	2.39	1.59	1.07	3.29	0. 28	0.20	0.08	74.4	4.76	14.9	6	0.013	0.006

表 5-4 按镓走向模拟各元素分异及示踪古沉积环境特征值统计表

### 中国科学院地球化学研究所博士后研究工作报告

头衣 计 这场足问法以百儿杀力并及小球口儿你们免付止追乳り	<b>片</b> 衣
-------------------------------	------------

序号	件	Ga含量 区间	TREO	TLREO	TMREO	THREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	<b>Y</b> ₂ <b>O</b> ₃	La,/Yb	δEu	δCe
											(10 ⁻⁶ )								4			1	2	
1	6	110-137	3958	2772	545	641	573	1278	192	729	206	17.6	175	27.8	118	25.4	62.4	9.82	51.5	8.56	483	1.02	0.43	0.89
2	4	100-110	310	206	37.4	67	43.5	100	13.0	49.3	11.9	1.97	11.3	1.95	10.3	2.37	5.54	0.89	4.70	0.80	52.4	0.85	0.80	0.97
3	7	90-100	708	497	77.5	133	124	226	33.2	115	26.4	3.74	24.0	3.78	19.6	4.48	10.7	1.75	9.40	1.57	105	1.21	0.70	0.81
4	12	80-90	1435	1167	119	149	331	<mark>452</mark>	81.1	302	44.6	5.43	38.2	5.64	<mark>24</mark> .7	5.70	14.8	2.46	14.2	2.39	110	2.13	0.62	0.63
5	9	70-80	871	658	84.9	128	168	296	43.6	151	29.1	4.11	26.2	4.36	21.0	4.87	12.0	2.04	11.3	1.88	96.0	1.36	0.70	0.80
6	16	60-70	838	648	78.6	112	166	300	42.1	140	27.0	4.29	24.9	4.03	18.5	4.13	9.97	1.61	8.72	1.46	86.0	1.74	0.78	0.83
7	26	50-60	1205	803	140	262	213	334	57.2	199	41.9	7.79	42.3	8.09	39.7	9.59	23.4	3.81	20.0	3.47	202	0.97	0.87	0.70
8	43	40-50	833	606	91.6	136	161	250	44.6	150	30.1	5.81	27.9	4.88	22.9	5.17	12.4	2.04	11.2	1.89	103	1.31	0.94	0.68
9	15	30-40	533	390	56.6	85	98.9	173	25.6	92.5	18.4	4.01	17.7	2.97	13.5	3.05	7.22	1.15	6.16	1.04	66.9	1.47	1.04	0.79
10	6	20-30	720	494	87.7	138	115	251	28.9	99.2	29.2	4.88	25.8	4.92	22.9	5.06	11.8	1.98	10.7	1.79	107	0.98	0.83	1.00
11	3	10-20	1263	1069	89.2	105	302	524	62.2	181	30.9	4.38	30.1	4.41	19.5	4.30	10.8	1.83	10.5	1.74	75.9	2.62	0.67	0.88
12	5	玄武岩风化 亚黏土层	385	289	33.7	61.9	56.0	167	16.3	50.3	10.7	2.78	10.2	1.67	8.38	1.95	4.90	0.78	4.25	0.73	49.3	1.21	1.25	1.27
13	5	玄武岩风化 残积层	875	593	123	158	169	158	58.8	207	42.0	12.6	38.6	5.68	24.6	4.86	10.5	1.34	6.46	1.00	134	2.40	1.46	0.36
14	3	弱风化玄武	388	256	52.4	80.1	63.0	98.0	21.0	73.7	16.3	5.50	16.0	2.60	12.0	2.53	5.60	0.78	3.93	0.63	66.7	1.47	1.59	0.62
序号	件	Ga含量 区间	Sn	ZrO ₂	Nb ₂ O ₅	HfO ₂	Ta ₂ O5	Cr	Ba	Li	Rb	Sc	Sr	v	Cs	w	Th	U						
----	----	---------------	------	------------------	--------------------------------	--------------------	--------------------	-------	-------	---------------------	------	------	-------	-----	------	------	------	------						
										(10 ⁻⁶ )														
1	6	110-137	35.1	2600	543	99.7	42.3	59.2	87.5	60.0	5.70	18.8	95.4	161	0.29	1.82	69.0	18.4						
2	4	100-110	16.0	1490	346	48.2	23.5	134.0	139.1	40.6	1.91	24.8	32.2	364	0.17	1.48	35.7	8.11						
3	7	90-100	20.7	1890	405	62.6	30.9	142.9	258.9	42.0	5.56	32.5	65.1	449	0.20	1.91	47.8	9.55						
4	12	80-90	17.9	1692	351	57.9	21.8	130.7	164.6	57.9	9.60	35.9	153.9	398	0.23	2.50	39.0	9.69						
5	9	70-80	11.8	1021	238	35.0	14.5	123.7	126.7	58.7	12.3	31.8	100	437	0.62	4.15	27.7	8.02						
6	16	60-70	13.4	1236	281	41.0	17.7	115.8	148.3	53.2	7.12	30.0	119	442	0.24	4.20	30.9	8.88						
7	26	50-60	9.5	991	200	33.6	11.4	100.0	214.8	47.9	12.8	27.7	109	437	0.48	3.08	18.8	5.55						
8	43	40-50	9.9	991	202	32.0	12.4	103.5	180.0	45.6	12.0	33.4	99	471	0.39	3.96	19.8	6.04						
9	15	30-40	10.5	1057	213	32.7	13.6	172.9	276.9	32.7	18.8	33.1	71.4	399	0.60	2.11	21.1	5.29						
10	6	20-30	20.9	2103	428	63.6	27.8	101.8	80.1	27.0	9.22	35.3	74.9	310	0.17	2.56	44.6	10.7						
11	3	10-20	20.6	1970	466	67.9	25.5	45.2	58.9	19.8	8.27	34.1	117	267	0.12	4.77	46.7	15.1						
12	5	玄武岩风化亚 黏土层	4.9	620	117	15.5	6.7	84.7	158	27.3	31.7	35.3	26	533	5.40	1.83	11.4	3.4						
13	5	玄武岩风化残 积层	3.7	527	99	<mark>13</mark> .5	5.3	84.7	1005	15.6	169	31.1	66	484	1.93	0.78	5.6	1.9						
14	3	弱风化玄武岩	3.6	683	87	14.8	5.0	95.9	1674	13.7	80.9	30.6	132	457	0.56	0.72	6.0	1.7						

续表 5-4 按镓走向模拟各元素分异及示踪古沉积环境特征值统计表

### 四、按铝走向模拟各元素分异特征

将 147 件样品,按二氧化铝(Al₂O₃)从低到高分为 18 个组,分别求出各组元素、 比值及特征值平均值(表 5-5),可以总结出如下规律:

1、Al₂O₃含量由低到高,Sn、ZrO₂,HfO₂,Ta₂O₅,Ga、Th、及U总体变化趋势与其变化趋势相似,Al₂O₃含量12.5-15.0×10⁻²阶段,上述元素发生异常富集,是由于Zr/Rb 值达983,在此高能动荡水环境下,重力分异作用,而获得富集;而后随着铝的富集, 发生TFe₂O₃、MnO、Cr、V、Ga等元素流失的化学沉积作用,这些元素和V/Cr、V/Sc、 Mn/Fe、Zr/Al 的变化趋势与Al₂O₃趋势总体相反。而Li、Sr、W、SiO₂及稀土总量先富 集再流失,其中,随Al₂O₃富集趋势,稀土总量在Al₂O₃含量范围为42.5-45.0达到最高 值,之后随铝富集而降低,总体趋势中,存在多个异常富集区段,往往与Zr/Rb 值较为 吻合,代表高能水环境,有利于稀土元素与其它元素分异富集。特别地,尽管各稀土氧 化物趋势非常一致,也可以观察到,Al₂O₃含量范围为25.0-27.5×10⁻²、35.0-37.5×10⁻²及 47.5-50.0×10⁻²,重稀土富集程度明显大于轻稀土,而发生分异,对应的La_N/Yb_N也均小于 1。

2、与玄武岩风化亚粘土层比较而言,各元素及氧化物平均富集系数按大小依次为: Sr (3.27) > HfO₂ (3.01) > Tb₄O₇ (2.94) > Nd₂O₃ > Ta₂O₅ > Sn > Sm₂O₃ > La₂O₃ > Gd₂O₃ > Dy₂O₃ > Th > HO₂O₃ > Tm₂O₃ > Yb₂O₃ > Lu₂O₃ > Pr₆O₁₁ > Er₂O₃ > Nb₂O₅ > U > ZrO₂ > Y₂O₃ (2.21) > Eu₂O₃ (1.79) > CaO > CeO₂ > W > Al₂O₃ > Li > Cr > Ga > Ba > K₂O > Na₂O (1.27) > MgO (0.99) > TiO₂ > Sc > TFe₂O₃ > V (0.80) > SiO₂ (0.77) > P₂O₅ > MnO

> Rb(0.36) > Cs(0.07)。与玄武岩风化残积层比较而言,各元素及氧化物平均富集 系数按大小依次为Th(5.56) > U(4.21) > W(3.89) > Sn > Ta₂O₅ > HfO₂(3.43) > Nb₂O₅(2.99) > ZrO₂ > Li(2.57) > Al₂O₃(1.95) > Lu₂O₃ > CeO₂ > Yb₂O₃ > Ga > Tm₂O₃ > Cr > Sr > Er₂O₃ > HO₂O₃ > Sc(1.01) > TFe₂O₃(0.96) > La₂O₃ > Dy₂O₃ > TiO₂ > V > Tb₄O₇ > P₂O₅ > Y₂O₃ > Gd₂O₃ > Sm₂O₃ > Pr₆O₁₁ > Nd₂O₃ > SiO₂ > MnO(0.52) > Eu₂O₃ > CaO > Ba > Na₂O > MgO > K₂O > Cs(0.18) > Rb(0.07)。各稀土氧化物相对玄武岩风化残积层而言, 富集系数存在一定变化而存在分异,总体富集1-3倍,而Ga平均富集1-2倍,Nb₂O₅ 平均富集2-3倍。其中,相对于玄武岩风化亚粘土层而言,仅Sc发生轻微贫化;而相 对玄武岩风化残积层而言,La₂O₃,Dy₂O₃,Tb₄O₇,Gd₂O₃、Sm₂O₃、Pr₆O₁₁、Nd₂O₃在沉积 过程中发生亏损。即,伴随Al₂O₃的富集,La₂O₃,Dy₂O₃,Tb₄O₇,Gd₂O₃、Sm₂O₃、Sm₂O₃、Pr₆O₁₁、Nd₂O₃在沉积

3、Al₂O₃富集与古沉积环境的关系

(1) 古气候指标 CIA 变化范围为 95.2-99.0, 指示古气候炎热、潮湿。

(2) 古水深指标 Mn/Fe 和 Zr/Al 变化范围分别为 0.003-0.009 和 0.004-0.024, 代表 离岸较近的环境。

(3) 古水动力条件 Zr/Rb 变化范围 37.0-983, 属于高能的水动力震荡环境。

(4) 古盐度 Sr/Ba 变化范围为 0.07-1.12, Al₂O₃ 富集主要在海相环境、海陆过渡的 半咸水环境及陆相微咸水或淡水环境发育,古盐度 Sr/Ba 从陆相-海陆过渡相-海相,Al₂O₃ 含量总体增高。但,Al₂O₃ 含量范围 60.0-67.8×10⁻² 和 40.0-42.5×10⁻² 分别对应的 Sr/Ba 为 0.39 和 0.35,指示陆相微咸水或淡水环境,亦能发生铝富集。

(5) 古氧化还原指标 V/Cr 和 V/Sc 趋势与 Al₂O₃ 趋势大体相反,变化范围分别为 2.40-5.54 和 7.39-24.2.0,代表由还原环境向贫氧环境变化,Al₂O₃ 越来越富集。特别地, δEu 随 Al₂O₃ 变高,显示总体降低趋势,δCe 随 Al₂O₃ 变高,显示总体升高趋势,亦代表 由还原环境向贫氧环境变化的地质内涵。同时,La_N/Yb_N 随 Al₂O₃ 变高,显示出锯齿状 变化趋势。

# 第5章 沉积分异阶段研究

序号	件	Al2O3含量 区间	Al ₂ O ₃	SiO ₂	TFe ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	古盐度	古气候 条件	氧化还	原条件	水动力 条件	古水	深
1.7.1974			8 2	8 0	a	( 20	$(10^{-2})$	10.	34	a 24	6 - 2	8	Sr/Ba	CIA	V/Cr	V/Sc	Zr/Rb	Mn/Fe	Zr/Al
1	4	60.0-67.8	64.31	9.49	4.68	5.53	0.93	0.08	0.11	0.14	0.11	0.02	0.39	98.3	2.76	7.39	110	0.005	0.005
2	4	50.0-60.0	56.5	13.54	6.20	6.98	0.36	0.06	0.12	0.19	0.13	0.02	1.12	99.0	5.41	9.25	181	0.003	0.005
3	5	47.5-50.0	49.1	24.96	3.47	6.14	0.94	0.10	0.09	0.23	0.10	0.02	0.89	97.7	3.83	10.7	86.0	0.005	0.006
4	2	45.0-47.5	45.8	26.51	4.63	6.80	0.59	0.12	0.09	0.21	0.10	0.02	0.98	98.3	3.39	11.4	104	0.004	0.006
5	5	42.5-45.0	44.0	29.06	5.57	4.83	1.13	0.09	0.08	0.23	0.18	0.02	0.86	97.1	3.10	9 90	75.2	0.004	0.006
6	4	40.0-42.5	41.6	36.48	1.85	4.27	1.82	0.19	0.10	0.17	0.11	0.01	0.35	95.2	2.47	9.47	37.5	0.008	0.005
7	4	37.5-40.0	38.8	31.67	7.97	5.79	0.67	0.11	0.11	0.33	0.10	0.03	0.81	97.8	3.14	10.6	99.4	0.004	0.007
8	19	35.0-37.5	36.0	40.21	4.96	4.12	0.53	0.11	0.13	0.32	0.13	0.03	0.92	97.9	4.30	15.1	85.0	0.007	0.005
9	23	32.5-35.0	34.1	40.24	5.25	5.75	0.61	0.10	0.27	0.28	0.21	0.03	0.98	97.2	3.24	14.4	89.1	0.007	0.005
10	14	30.0-32.5	31.1	34.5	13.82	4.78	0.32	0.08	0.14	0.46	0.24	0.11	0.78	98.3	4.41	14.2	131	0.009	0.006
11	12	27.5-30.0	28.4	35.7	14.06	6.05	0.34	0.08	0.16	0.48	0.28	0.04	0.51	98.0	2.80	11.5	125	0.003	0.006
12	8	25.0-27.5	26.6	30.1	19.50	6.16	0.70	0.08	0.13	0.54	0.29	0.12	0.39	96.7	3.47	13.3	37.0	0.007	0.005
13	14	22.5-25.0	24.0	26.7	26.02	4.69	0.41	0.06	0.17	0.79	0.36	0.10	0.54	97.4	4.47	13.7	50.1	0.004	0.004
14	12	20.0-22.5	21.8	26.6	26.84	5.19	0.26	0.07	0.33	0.89	0.36	0.17	0.18	97.0	2.99	13.0	86.4	0.007	0.005
15	4	17.5-20.0	19.0	23.1	34.21	4.26	0.19	0.06	0.16	1.12	0.31	0.20	0.07	97.8	5.54	16.6	79.4	0.006	0.006
16	4	15.0-17.5	16.2	20.6	36.87	5.41	0.32	0.07	0.11	0.82	0.16	0.15	0.19	97.0	4.96	24.2	122	0.005	0.013
17	4	12.5-15.0	13.9	16.4	38.60	7.80	0.08	0.08	0.11	0.97	0.18	0.25	0.27	98.1	2.40	16.1	983	0.007	0.024
18	4	9.58-12.5	11.0	11.4	43.26	3.58	0.10	0.05	0.15	0.63	0.40	0.28	0.27	97.4	5.09	23.2	181	0.007	0.008
19	5	玄武岩风化 亚黏土层	21.4	34.2	21.0	5.63	0.42	0.07	0.09	0.52	0.32	0.20	0.17	97.4	6.29	15.1	14.5	0.011	0.004
20	5	玄武岩风化 残积层	16.6	38.4	18.4	5.67	2.80	0.41	0.46	2.65	0.27	0.18	0.07	81.9	5.71	15.5	2.31	0.011	0.004
21	3	弱风化玄武	14.7	41.6	17.0	5.15	2.39	1.59	1.07	3.29	0.28	0.20	0.08	74.4	4.76	14.9	6.25	0.013	0.006

表 5-5 按铝走向模拟各元素分异及示踪古沉积环境特征值统计表

续表 5-5 按铝走向模拟各元素分异及示踪古沉积环境特征值统计表

序号	件	Al ₂ 0 ₃ 含 量区间	TREO	TLREO	TMREO	THREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er203	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	La _N /Yb _N	δEu	δCe
		$(10^{-2})$			142 V			1.57		37 - Y		(10-6)				2	a a							0
1	4	60.0-67.8	792	593	83.2	117	150	298	34.2	110	29.3	4.35	25.1	4.39	20.1	4.44	10.6	1.79	10.0	1.65	88.0	1.37	0.75	0.96
2	4	50.0-60.0	899	690	86.8	122	192	321	41.3	135	29.3	4.58	27.5	4.46	21.0	4.59	10.9	1.79	9.87	1.64	93.3	1.78	0.76	0.83
3	5	47.5-50.0	848	553	111	184	144	238	39.6	132	32.5	6.41	33.7	6.59	31.5	6.68	15.3	2.50	13.7	2.23	144	0.96	0.91	0.72
4	2	45.0-47.5	713	507	78.4	128	126	227	35.3	119	25.3	4.06	23.8	4.22	21.0	4.73	11.2	1.88	10.3	1.69	97.8	1.13	0.78	0.78
5	5	42.5-45.0	1421	1123	114	184	327	444	85.6	267	38.3	3.97	37.2	6.16	28.2	6.89	18.2	3.16	17.6	3.04	135	1.70	0.49	0.61
6	4	40.0-42.5	930	743	76.3	111	219	309	53.3	161	25.3	3.68	23.7	4.18	19.4	4.44	11.1	1.90	10.7	1.76	80.7	1.88	0.70	0.66
7	4	37.5-40.0	733	585	66.5	81	153	273	41.3	118	23.5	3.43	20.4	3.36	15.7	3.43	8.56	1.49	8.66	1.42	57.5	1.62	0.73	0.79
8	19	35.0-37.5	1036	698	118	220	176	304	49.1	169	35.5	5.77	35.1	6.76	35.1	8.41	20.8	3.58	19.7	3.33	164	0.82	0.77	0.75
9	23	32.5-35.0	1272	980	123	169	287	398	66.1	229	41.6	7.21	39.0	6.45	28.5	6.39	15.4	2.46	13.5	2.30	129	1.94	0.84	0.66
10	14	30.0-32.5	957	685	101	171	174	297	46.1	167	34.2	5.42	30.9	5.06	25.4	5.97	14.7	2.42	13.0	2.18	133	1.23	0.78	0.76
11	12	27.5-30.0	1273	892	159	221	217	384	62.3	229	56.6	6.86	49.8	8.25	38.0	8.41	20.0	3.16	16.8	2.80	170	1.19	0.61	0.76
12	8	25.0-27.5	892	539	108	244	122	230	39.1	148	30.9	5.97	31.4	6.35	33.7	8.58	20.8	3.32	17.1	2.99	191	0.65	0.90	0.76
13	14	22.5-25.0	823	626	91.1	105	154	254	47.7	171	33.7	6.71	28.0	4.44	18.3	3.99	9.56	1.48	7.90	1.35	81.2	1.78	1.02	0.68
14	12	20.0-22.5	490	333	64.5	92	74.7	144	23.7	90.5	21.3	4.58	20.0	3.41	15.2	3.39	7.86	1.23	6.52	1.12	72.4	1.05	1.04	0.79
15	4	17.5-20.0	419	305	46.6	67	64.7	147	18.0	75.0	15.2	4.07	14.5	2.29	10.6	2.39	5.44	0.80	4.13	0.68	53.6	1.43	1.29	0.99
16	4	15.0-17.5	866	694	65.1	107	149	372	39.7	134	21.0	3.02	21.7	3.35	16.0	3.80	9.34	1.50	7.87	1.36	83.0	1.73	0.66	1.11
17	4	12.5-15.0	425	288	49.5	87	63.4	135	19.9	70.5	17.0	3.07	14.9	2.61	11.8	2.80	6.74	1.10	5.82	1.00	69.9	1.00	0.90	0.87
18	4	9.58-12.5	553	420	60.1	73	102	177	29.4	110	22.4	3.17	19.5	3.12	11.8	2.55	6.02	0.96	5.19	0.87	57.5	1.81	0.71	0.74
19	5	玄武岩风化 亚黏土层	385	289	33.7	62	56.0	167	16.3	50.3	10.7	2.78	10.2	1.67	8.38	1.95	4.90	0.78	4.25	0.73	49.3	1.21	1.25	1.27
20	5	玄武岩风化 残积层	875	593	123.4	158	169	158	58.8	207	42.0	12.6	38.6	5.68	24.6	4.86	10.5	1.34	6.46	1.00	134	2.40	1.46	0.36
21	3	弱风化玄武	388	256	52.4	80	63.0	98.0	21.0	73.7	16.3	5.50	16.0	2.60	12.0	2.53	5.60	0.78	3.93	0.63	66.7	1.47	1.59	0.62

# 第5章 沉积分异阶段研究

续表 5-5 按铝走向模拟各元素分异及示踪古沉积环境特征值统计表

序号	件	Al ₂ 0 ₃ 含量 区间	Sn	ZrO ₂	Nb ₂ O ₅	HfO ₂	Ta ₂ O ₅	Cr	Ba	Li	Rb	Sc	Sr	V	Ga	Cs	W	Th	U
	-	(10 ⁻² )	**************************************	01 - V		2	96 - 7 S			(	(10 ⁻⁶ )	12	12	52.	59 - S		112	5 <i>0</i>	
1	4	60.0-67.8	23.5	2461	510	74.9	32.5	88.2	155	12.5	16.6	32.9	60.9	244	25.2	0.33	3.72	55.9	15.7
2	4	50.0-60.0	20.8	1977	467	64.8	28.5	61.3	94	24.4	8.09	35.9	104	332	26.1	0.11	3.33	47.5	11.9
3	5	47.5-50.0	21.5	2042	430	67.7	27.7	106	106	55.7	17.6	37.8	93.8	405	42.8	0.26	4.98	36.2	10.1
4	2	45.0-47.5	23.8	1808	375	60.8	28.9	111	105	58.2	12.9	33.0	103	375	35.5	0.29	4.56	46.4	9.16
5	5	42.5-45.0	18.8	1979	342	65.4	23.7	99.8	133	72.0	19.5	31.2	114	309	55.3	0.36	4.69	33.2	8.13
6	4	40.0-42.5	16.1	1618	299	56.4	18.8	98.4	305	55.0	31.9	25.7	106	243	36.4	0.86	4.07	30.5	7.65
7	4	37.5-40.0	20.7	1961	371	64.8	28.0	114	103	74.4	14.6	33.6	83.3	358	65.9	0.25	5.49	46.4	10.5
8	19	35.0-37.5	13.3	1263	277	44.2	15.8	89.8	106	60.9	11.0	25.6	97.5	386	54.4	0.40	3.44	30.8	7.28
9	23	32.5-35.0	12.8	1216	251	41.4	14.8	145	149	53.8	10.1	32.6	147	470	60.0	0.36	4.15	27.3	8.02
10	14	30.0-32.5	15.0	1242	287	42.7	18.9	99.3	158	49.5	7.02	30.9	123	438	74.4	0.30	2.56	31.9	7.95
11	12	27.5-30.0	14.3	1212	274	41.8	17.2	153	200	45.0	7.18	37.2	102	429	68.8	0.37	2.59	27.1	8.20
12	8	25.0-27.5	9.87	1010	234	32.9	14.8	133	218	45.8	20.2	34.6	85.9	461	74.8	0.58	3.88	16.7	6.10
13	14	22.5-25.0	6.57	752	162	22.6	10.0	104	206	41.2	11.1	33.9	112	466	60.4	0.57	2.74	16.1	4.52
14	12	20.0-22.5	7.10	795	158	24.0	10.7	169	269	28.1	6.81	38.7	48.5	504	53.2	0.40	2.43	15.7	4.27
15	4	17.5-20.0	7.20	756	168	24.4	11.0	91.0	597	26.4	7.05	30.3	44.6	504	58.6	0.37	1.38	18.0	5.34
16	4	15.0-17.5	13.2	1546	305	49.5	21.0	136	236	33.0	9.37	28.0	45.8	677	73.7	0.18	1.38	31.5	7.65
17	4	12.5-15.0	19.6	2428	451	74.4	36.0	229	273	19.3	1.83	34.2	72.4	551	80.0	0.11	1.97	53.9	6.59
18	4	9.58-12.5	5.17	646	118	16.6	7.26	87.8	221	24.5	2.65	19.2	59.9	447	47.1	0.12	0.95	10.3	5.44
19	5	玄武岩风化亚 黏土层	4.92	620	117	15.5	6.66	84.7	158	27.3	31.7	35.3	26.3	533	39.8	5.40	1.83	11.4	3.37
20	5	玄武岩风化残 积层	3.74	527	99.2	13.5	5.34	84.7	1005	15.6	169	31.1	66.1	484	32.8	1.93	0.78	5.60	1.92
21	3	弱风化玄武岩	3.60	683	86.6	14.8	4.96	95.9	1674	13.7	80.9	30.6	132	457	31.0	0.56	0.72	5.97	1.74

### 五、按铁走向模拟各元素分异特征

将 147 件样品,按氧化铁(TFe₂O₃)从低到高分为 9 个组,分别求出各组元素、比 值及特征值平均值(表 5-6),可以总结出如下规律:

TFe₂O₃含量由低到高, MgO、MnO、V/Sc、Cr 变化趋势与其变化趋势一致, 而
 Al₂O_{3、}SiO₂、K₂O及 Na₂O 趋势大致相反, P₂O₅、Sr/Ba、Sn、ZrO₂、Nb₂O₅、HfO₂、Ta₂O₅、
 Sc、Sr、W 先富集再贫化, Th、U、Zr/Rb、Zr/Al 等呈现锯齿状趋势。

2、与玄武岩风化亚粘土层比较而言,各元素及氧化物平均富集系数按大小依次为:  $Sr(3.79) > Nd_2O_3 > La_2O_3 > Sm_2O_3 > Tb_4O_7(3.07) > Gd_2O_3(2.99) > Pr_6O_{11} > Dy_2O_3 > HfO_2 > Control Order (1.00) > Control$  $HO_2O_3 > Sn > Tm_2O_3 > Yb_2O_3 > Ta_2O_5 > Lu_2O_3 > Er_2O_3 > Th > Nb_2O_5 > Y_2O_3 > U > ZrO_2 > Control Not the second se$  $CaO(2.06) > Eu_2O_3(1.92) > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > CeO_2 > CeO_2 > Li > W > Ga > Al_2O_3 > Cr > Na_2O > K_2O > Ba(1.27) > CeO_2 > C$  $MgO(0.99) > TiO_2(0.89) > Sc > SiO_2 > TFe_2O_3 > V(0.80) > P_2O_5(0.74) > MnO(0.47) >$ Rb(0.34) > Cs(0.06)。与玄武岩风化残积层比较而言,各元素及氧化物平均富集系数按大 小依次为Th(5.01) > W(3.82) > U > Sn > Ta₂O₅ > HfO₂(3.18) > Li(2.86) > Nb₂O > ZrO₂(2.50) > Lu₂O₃(1.92) > Al₂O₃ > CeO₂ > Ga > Yb₂O₃ > Tm₂O₃ > Sr > Cr > Er₂O₃ > HO₂O₃ > La₂O₃ > $Sc(1.00) > Dy_2O_3(0.96) > TFe_2O_3 > Tb_4O_7 > TiO_2 > V > P_2O_5 > Y_2O_3 > Pr_6O_{11} > Nd_2O_3 > O_2O_3 >$  $Sm_2O_3 > Gd_2O_3 > SiO_2 > MnO(0.51) > Eu_2O_3 > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > CaO > CaO > Na_2O > Ba > MgO > K_2O > Cs(0.18) > CaO > CaO > CaO > Na_2O > CaO >$ Rb(0.06)。各稀土元素氧化物相对玄武岩风化物而言,富集系数存在一定变化而存在分 异,总体富集 1-4 倍,而 Ga 平均富集 1-2 倍,Nb2O5 平均富集 2-3 倍。其中,相对于玄 武岩风化亚粘土层而言, 仅 Sc 发生贫化; 相对玄武岩风化残积层而言, Dy2O3、Tb4O7、 Y₂O₃、Pr₆O₁₁、Sm₂O₃、Gd₂O₃和Eu₂O₃在沉积过程中发生贫化,即,伴随TFe₂O₃的富 集, Dy₂O₃、Tb₄O₇、Y₂O₃、Pr₆O₁₁、Sm₂O₃、Gd₂O₃和 Eu₂O₃在沉积过程中发生流失, 而 与其它稀土元素发生分异。

3、TFe2O3 富集与古沉积环境的关系

(1) 古气候指标 CIA 变化范围为 96.5-98.4, 指示古气候炎热、潮湿。

(2) 古水深指标 Mn/Fe 和 Zr/Al 变化范围分别为 0.003-0.011 和 0.004-0.012, 代表 离岸较近的环境。

(3) 古水动力条件 Zr/Rb 变化范围 26.2-367, 属于高能的水动力震荡环境。特别地, 总体而言, 水动力条件越强, TFe₂O₃ 含量总体越高。

(4) 古盐度 Sr/Ba 变化范围为 0.19-1.18, TFe₂O₃ 主要在陆相微咸水或淡水环境最

为富集,而 Sr/Ba为1.02时,TREO最富集,TFe2O3与稀土随环境变化而发生分异。

(5) 古氧化还原指标 V/Cr 和 V/Sc 变化趋势与 TFe₂O₃ 大体相似,变化范围分别为 3.12-5.09 和 10.7-19.7,整体处于贫氧环境。特别地,δEu 随 TFe₂O₃变高,显示总体降 低趋势,δCe 随 TFe₂O₃变高,显示总体升高趋势,亦代表由还原环境向贫氧环境变化的 地质内涵。同时,La_N/Yb_N 随 TFe₂O₃变高,存在锯齿状变化。

### 中国科学院地球化学研究所博士后研究工作报告

序号	件	TFe ₂ O ₃ 含量区间	TFe ₂ O ₃	Al ₂ O ₃	SiO ₂	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P ₂ O ₅	MnO	古盐度	古气候 条件	古氧原約	化还 ≹件	古水动 力条件	古才	k深
						(10 ⁻² )			60°	37		601	Sr/Ba	CIA	V/Cr	V/Sc	Zr/Rb	Mn/Fe	Zr/Al
1	7	40.0-43.9	42.6	12.8	13.9	3.52	0.21	0.06	0.13	0.56	0.31	0.25	0.28	97.0	5.09	19.7	77.8	0.007	0.007
2	15	30.0-40.0	34.0	20.1	20.2	5.50	0.14	0.06	0.13	1.12	0.19	0.16	0.19	98.4	3.60	17.8	308	0.005	0.012
3	11	25.0-30.0	27.5	23.7	25.0	4.82	0.26	0.07	0.37	0.97	0.36	0.18	0.29	97.1	4.59	12.5	72.4	0.007	0.004
4	20	20.0-25.0	23.2	25.6	28.3	4.63	0.46	0.07	0.15	0.69	0.37	0.10	0.53	97.4	3.52	13.8	56.6	0.005	0.005
5	20	10.0-20.0	11.8	33.5	34.5	4.66	0.53	0.10	0.11	0.35	0.31	0.03	1.02	97.8	3.50	12.8	126	0.003	0.007
6	26	5.00-10.0	7.23	37.8	33.3	6.62	0.44	0.10	0.13	0.28	0.15	0.07	0.57	98.3	3.33	12.2	104	0.011	0.005
7	22	3.00-5.00	3.81	38.8	37.0	5.52	0.48	0.10	0.14	0.26	0.20	0.02	1.18	98.2	3.15	13.8	114	0.006	0.005
8	16	2.00-3.00	2.44	40.1	36.5	5.50	1.02	0.11	0.30	0.23	0.13	0.02	0.72	96.5	3.24	10.7	76.0	0.008	0.006
9	10	0.46-2.00	1.30	43.9	34.5	4.41	1.34	0.12	0.10	0.17	0.09	0.01	0.40	96.6	3.39	11.3	56.5	0.010	0.005
13	5	玄武岩风化亚黏 土层	21.0	21.4	34.2	5.63	0.42	0.07	0.09	0.52	0.32	0.20	0.17	97.4	6.29	15.1	14.5	0.011	0.004
14	5	玄武岩风化残积 层	18.4	16.6	38.4	5.67	2.80	0.41	0.46	2.65	0.27	0.18	0.07	81.9	5.71	15.5	2.31	0.011	0.004
15	3	弱风化玄武岩	17.0	14.7	41.6	5.15	2.39	1.59	1.07	3.29	0.28	0.20	0.08	74.4	4.76	14.9	6.25	0.013	0.006

表 5-6 按铁走向模拟各元素分异及示踪古沉积环境特征值统计表

# 第5章 沉积分异阶段研究

序号	件	TFe2O3含量 区间	TREO	TLREO	TMREO	THREO	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	La _N /Yb _N	<mark>ðE</mark> u	δCe
		$(10^{-2})$			301 3				50° 73			(10-6	)		37	37	37. 38							
1	7	40.0-43.9	507	381	50	76	96.1	165	26.0	93.6	17.6	2.54	16.1	2.69	11.3	2.60	6.32	1.02	5.42	0.92	59.7	1.62	0.71	0.76
2	15	30.0-40.0	523	398	50	75	82.7	202	24.8	88.8	17.3	3.18	15.8	2.48	11.5	2.63	6.36	1.02	5.43	0.92	58.5	1.39	0.90	1.02
3	11	25.0-30.0	691	492	81	117	116	215	33.6	127	27.6	5.29	25.2	4.27	19.1	4.31	10.3	1.64	8.78	1.50	90.7	1.21	0.94	0.79
4	20	20.0-25.0	1131	836	134	160	191	363	60.6	222	49.7	7.12	41.6	6.67	28.8	6.31	15.3	2.41	12.9	2.16	121	1.36	0.73	0.77
5	20	10.0-20.0	1529	1148	158	223	340	432	86.2	290	57.0	7.94	49.9	7.65	35.1	7.85	18.6	2.96	16.0	2.68	175	1.95	0.70	0.58
6	26	5.00-10.0	900	644	96	160	174	273	45.5	152	30.8	5.05	28.5	5.25	26.6	6.15	15.0	2.56	14.2	2.37	120	1.12	0.80	0.71
7	22	3.00-5.00	1242	921	127	195	259	379	62.3	220	41.3	7.09	40.1	6.90	31.1	7.02	16.8	2.67	14.4	2.44	152	1.65	0.82	0.69
8	16	2.00-3.00	955	683	100	172	182	304	46.5	150	30.9	5.05	30.2	5.69	28.6	6.87	17.2	3.00	16.8	2.83	125	0.99	0.78	0.76
9	10	0.46-2.00	786	588	81	117	150	271	39.1	128	26.2	4.88	25.7	4.44	19.3	4.23	9.78	1.58	8.61	1.45	91.4	1.60	0.88	0.81
13	5	玄武岩风 化亚黏土	385	<mark>28</mark> 9	33.7	<mark>61.9</mark>	56.0	<mark>167</mark>	16.3	50.3	10.7	2.78	10.2	1.67	8.38	1.95	<mark>4.9</mark> 0	0.78	4.25	0.73	<mark>49.3</mark>	1.21	1.25	1.27
14	5	玄武岩风 化残积层	875	593	123	158	169	158	58.8	207	42.0	12.6	38.6	5.68	24.6	4.86	10.5	1.34	6.46	1.00	134	2.40	1.46	0.36
15	3	弱风化玄 武岩	388	256	52.4	80.1	63.0	<mark>98.</mark> 0	21.0	73.7	16.3	5.50	16.0	2.60	12.0	2.53	5.60	0.78	3.93	0.63	66.7	1.47	1.59	0. <u>6</u> 2

序号	件	TFe2O3含 重区间	Sn	ZrO ₂	Nb ₂ O ₅	HfO ₂	Ta ₂ O ₅	Cr	Ba	Li	Rb	Sc	Sr	v	Ga	Cs	w	Th	U
		$(10^{-2})$				va: J		87 - P	s	s	(10-6	)					v 30	2	
1	7	40.0-43.9	5.11	595	118	15.9	7.36	84.6	190	22.2	5.66	21.9	53.8	430	48.0	0.13	0.94	10.3	5.35
2	15	30.0-40.0	14.73	1661	330	52.9	24.2	151	321	40.0	4.00	30.5	61.4	544	83.8	0.19	2.02	39.2	7.22
3	11	25.0-30.0	5.45	639	132	19.4	8.10	106	254	30.6	6.53	39.0	72.7	488	51.4	0.34	3.77	12.6	3.77
4	20	20.0-25.0	9.90	937	221	31.0	14.2	127	214	45.9	12.3	32.5	113	448	66.7	0.52	2.65	21.1	6.99
5	20	10.0-20.0	20.85	1760	396	59.5	27.4	109	176	53.1	10.3	29.9	180	383	78.8	0.30	4.34	40.7	9.09
6	26	5.00-10.0	14.31	1374	288	44.0	18.0	131	155	54.1	9.82	35.7	87.9	437	56.9	0.35	3.87	31.2	9.05
7	22	3.00-5.00	15.11	1449	292	50.4	18.0	139	116	49.9	9.45	31.7	137	439	51.7	0.31	3.36	32.1	8.20
8	16	2.00-3.00	17.73	1733	345	59.4	21.8	114	142	48.6	16.9	34.4	102	370	50.9	0.37	3.15	37.3	9.41
9	10	0.46-2.00	16.05	1688	325	55.4	19.2	84.8	226	58.1	22.1	25.5	89.8	287	40.1	0.65	2.68	27.9	5.74
13	5	玄武岩风化 亚黏土层	4.9	620	31.0	15.5	6.7	<mark>84.7</mark>	158	27.3	31.7	35.3	26	533	39.80	5.40	1.83	11.4	3.4
14	5	玄武岩风化 残积层	3.7	527	32.8	13.5	5.3	84.7	1005	15.6	169	31.1	66	484	32.82	1.93	0.78	5.6	1.9
15	3	弱风化玄武 岩	3.6	683	31.0	14.8	5.0	95.9	1674	13.7	80.9	30 <mark>.6</mark>	132	457	31.03	0.56	0.72	6.0	1.7

# 续表 5-6 按铁走向模拟各元素分异及示踪古沉积环境特征值统计表

### 2、按岩性模拟各元素分异

峨眉山玄武岩古风化-沉积型稀土多金属矿(化)层为一套富稀土、铌、镓、铝、铁质的粘土岩-粉砂岩系,岩性主要为灰白-深灰色粘土岩、泥质粉砂岩、粉砂质泥岩组成,常伴有植物化石,沉积特征明显,局部共伴生铁矿、铝土矿。

岩性	元素	A1202	SiO ₂	A/S	TFe ₂ O ₂	Ga	Zr02	Nb205	TiO ₂	Sc	<b>S</b> REE	ΣRE (Ce)	Σ RE (Y)
	新鲜(4)	14.1	47.0	0.30	13.0	27.38	519.48	61.42	3.67	22.96	356	276	80
玄	弱风化(10)	16.7	40.6	0.41	17.8	32.84	431.41	66.18	5.25	30.48	577	427	150
五	中等风化	20.6	32.8	0.63	22.0	40.79	487.08	97.2	6.28	37.37	668	506	162
岩	次强风化(6)	22.4	24.2	0.92	25.9	43.73	492.59	103.26	7.01	43.01	492	379	114
	强风化(3)	18.1	21.0	0.86	35.8	50.69	627.8	160.18	5.09	31.31	393	289	104
搬	铁矿(44)	19.0	20.4	0.93	34.2	65.7	1169	230.3	4.90	29.7	663	534	129
运	<b>粉砂岩(12)</b>	29.0	28.8	1.01	18.3	58.18	1147	236.63	5.21	35.23	964	745	219
迎	粘土岩(31)	25.7	30.2	0.85	21.0	69.36	1060.1	232.03	5.64	35. 59	883	637	245
由	<b>铝质岩(54)</b>	33.2	31.8	1.04	13.2	59.21	1351.6	285.9	5.17	31.63	980	748	232
近网	铝土岩(6)	42.6	33.9	1.25	3.3	47.18	1842.3	339.85	4.22	29.75	1165	972	193
到远	铝土矿(17)	54.7	18.1	3.02	4.6	32.75	2143	452.48	6.29	35.61	831	639	192

#### 表 5-7 按岩性变化模拟各元素分异

通过系统采集研究区不同风化程度的玄武岩,结合次生成矿地质作用过程,按物源 区由近到远依次采集褐铁矿、粉砂岩、粘土岩、铝质岩、铝土岩及铝土矿样品近 194 件, 剔除极值样,统计获得表 5-7。如表可见:

(1)表生风化作用下,玄武岩中 Al 元素表现为随风化程度增强,逐渐富集,而 Si 元素则变现为亏损;在搬运过程中,由近到远,Al 元素亦逐渐增强,而 Si 元素表现 先轻微富集,直到物理化学作用突变,铝土矿形成阶段,Si 元素迅速亏损;总体而言, 玄武岩风化程度由弱变强,离源区由近到远,总体铝硅比由小变大。

(2) Fe、Ga、Zr、Nb 元素在玄武岩风化过程中,变现为随风化程度加强而富集。 但在次生搬运-沉积过程中,Fe 元素随着搬运距离由近到远逐渐亏损;Ga 元素表现为先 逐渐富集(粘土岩中最富集),而后逐渐亏损;Zr、Nb 元素则表现为越来越富。

(3) Ti、Sc、REE 元素在玄武岩风化过程中,变现为随风化程度先富集再亏损。 其中,Ti、Sc 元素在次强风化程度富集程度最强,而后逐渐亏损。而稀土元素总体在中 等风化程度最富集,而后逐渐亏损。符合典型风化淋积型稀土多金属矿床特征。Ti、Sc 元素在次生作用下地球化学行为相对稳定,变化不大。而轻、重稀土元素在次生沉积作 用过程中发生分异。其中,轻稀土元素在铝土岩阶段得到最大化富集,随后亏损;而重 稀土元素在粘土岩阶段得到最大化富集,随后亏损。

2012-2018年,于蕾^[82]、田茂军^[83]、焦扬^[65,84-85]、范良军^[86]先后开展赋存于上二叠 统龙潭组云南滇东南晚二叠世龙潭组铝土矿带(如:天生桥铝土矿)研究,认为物质来

源于峨眉山玄武岩。1984 年至今,潘其云^[87]、龙永珍^[88]、陈粤^[89]等学者对桂西平果-靖 西-德保-田阳-田东晚二叠世铝土矿成矿带开展相关研究,也认为成矿物质与峨眉山玄武 岩有关,且:①铝土矿中轻稀土的含量明显高于重稀土,轻、重稀土元素存在明显分异 作用;②桂西铝土矿均表现出 Ga、Li、Be、Zr、Nb、Ta、Hf 相对富集,Sr、Rb、Cs 强烈亏损的现象。③经初步计算在桂西铝土矿区中存在丰富的三稀金属资源储量。本文 研究过程中,在威宁大寨地区,在龙潭组亦发现铝土矿点(图 5-3、5-4),Al₂O₃含量 49.4~67.81%,铝硅比 2.00~9.11。此外,伴共生有益元素 TiO₂(6.30-7.024×10%)、 Sc(22-54×10⁻⁶)、Ga(22-104×10⁻⁶)、Nb₂O₅(447-571×10⁻⁶,达边界品位)、稀土氧 化物总量(TREO)(1000-3200×10⁻⁶),经对比,具有相似的成矿条件。

综合上述,玄武岩古风化-沉积地质作用过程,完全可能形成稀土-铌-镕-铝-铁多金 属成矿带。



图 5-3 威宁结戛铝土矿区 TC15 素描图

	样品	百百	$Al_2O_3$	SiO ₂		TFe ₂ O ₃	全硫	TiO ₂	Sc	Ga	ZrO ₂	Nb ₂ O ₅
TC15	编号	<del>具</del> 序	( 10	⁻² )	Aø	(	10 ⁻² )			(10	)~^)	
	TC15H10	0.61	24.45	17.13	1.43	35.16	0.042	3.56	20	104	1106	264
H10	TC15H9	0.59	46.32	26.01	1.78	4.73	0.036	6.73	31	39	1746	347
1m – H9 H8	TC15H8	0.37	27.60	17.40	1.59	32.20	0.051	3.73	38	<b>9</b> 2	1253	283
H7	TC15H7	0.18	<mark>53.83</mark>	<mark>9.2</mark> 8	5.80	13.28	0.053	7.02	43	40	2103	541
() H5	TC15H6	0.45	<mark>61.57</mark>	<b>6.4</b> 3	<mark>9.5</mark> 7	9.61	0.051	6.30	33	26	1837	447
H4	TC15H5	0.74	30.14	15.97	1.89	30.61	0.035	5.03	30	96	1241	265
——————————————————————————————————————	TC15H4	0.41	39.64	28.22	1 <b>.40</b>	<b>9</b> .18	0.016	6.70	31	62	1550	322
$P_3x = H^2$	TC15H3	0.71	42.43	35.42	1.20	3.40	0.028	3.17	13	41	808	158
$\overline{\mathbf{P}_{3}\beta}^{3}$ $\overline{\boldsymbol{\Gamma}}$ $\overline{\boldsymbol{\Gamma}}$	TC15H2	0.67	36.08	41.06	0.88	5.15	0.017	2.66	15	57	811	164
	TC15H1	0.22	23.13	23.26	0.99	28.75	0.068	5.41	45	75	525	85
<b>Ρ</b> ₃ β ³ 横	俄眉山玄武   组三段	P ₃ x	宣威组		玄武岩	- -	粘_	诺	4	砂岩		

图 5-4 威宁某地铝土矿区 TC15 柱状图

# 5.3 赋存状态研究

样品描述:典型峨眉山玄武岩古风化-沉积型稀土多金属矿石样品采自威宁大寨铝 土矿区和威宁炉山铁多金属矿区,先进行岩矿鉴定,再在中国科学院地球化学研究所矿 床地球化学国家重点实验室,选用 EPMA 1600 型电子探针开展典型矿石主成矿元素及 部分主量元素扫描电镜研究工作。研究发现:

(1)各样品主要矿物成分为粘土矿物、铁矿物、钛矿物,具有明显的沉积特征。 其中,铁主要分布在褐铁矿中,仅有微量的铁存在于钛铁矿等含铁的其他氧化物或硫化 物中。褐铁矿的存在形式主要有两种:一种以细分散状态与粘土矿物混杂以胶结物形式 存在,或呈不定形胶状混染火山碎屑。主要分布在铁矿化相对较弱的凝灰岩以及其他火 山碎屑岩中;另一种则以大小不等的团块状、豆状等形式存在。几乎所有的褐铁矿中均 含有金属钛,这种现象说明,原岩中可能含有较多得含钛矿物,如钛铁矿等,后期褐铁 矿化不彻底而保留的原岩残留物,也可能是混杂于褐铁矿中的粘土矿物中所含的钛。矿 石中各种矿物之间的相嵌形态复杂,褐铁矿与粘土矿物之间常常混杂出现,褐铁矿分布 不均,团块大小差异大。

(2) 主量元素电镜面扫描分析结果显示(图 5-5): 沉积作用下, Si 和 K 元素分 布较为吻合, Fe 和 Ti 元素分布也较为吻合, Al 存在较多富集区域, 而 P 在局部富集。

(3) 轻稀土元素电镜面扫描分析结果显示(图 5-6): 沉积作用下, La、Ce及Pr 在局部富集, La、Ce、Pr与Ti元素分布特征较为吻合,少量与P元素吻合,能谱确认为 富 Nb-REE 独居石和磷酸 La 颗粒。而 Nd 元素总体分散,仅局部区域富集,与P元素高 值区较吻合。

(4)中稀土元素电镜面扫描分析结果显示(图 5-7):沉积作用下,Tb 和 Dy 在局部富集,而 Sm、Eu 及 Gd 元素较为分散,与玄武岩风化物中的中稀土元素电镜面扫描特征相似。

(5)重稀土元素电镜面扫描分析结果显示(图 5-8):沉积作用下,重稀土元素元素分布均较为分散。

(6) 微量元素电镜面扫描分析结果显示(图 5-9): 沉积作用下, Zr、Ga及 Nb元素分布均较为分散。



图5-5 典型古风化-沉积型稀土多金属矿石主量元素扫描电镜分析



电镜分析(500μm)







Pr



图5-6 典型古风化-沉积型稀土多金属矿石轻稀土元素扫描电镜分析









Eu

Gd







图5-8 典型古风化-沉积型稀土多金属矿石重稀土元素扫描电镜分析











(7) S214-03 样品富 Fe 团粒形成于较强的水动力条件(图 5-10),表现为: 1、富 Fe 团粒分选性较差,2、部分团粒破碎。3、现在复合团粒。早期 S214-05 的富 Fe 球粒铁含量较高,氧化程度较低(有氧化残余磁铁矿、氧化残余结构) 经初步的成岩作用高能水动力条件下,多次成球,最终沉积形成 S214-03 的复合 团粒。晚期铁含量降低,氧化彻底。杂基沉积物中散染状分布金红石、钛铁矿、 独居石,Nb 都分散赋存于独居石中(图 5-11),未形成 Nb 的独立矿物。



图 5-10 典型稀土多金属矿石(铁矿石)电镜分析

and the second	100		100
		- 0-	-
	100		100
		-	
1000		100	Contraction of the local division of the loc
		100	
			1
the second second second second	Service of the servic	and the state	
	- C.	200	Contraction of the local division of the loc
	A REAL PROPERTY.	1000	1000
and the second se	a series		Aller Protection
and the second s	-		
and the second s	and the second		1.00
CALL CONTRACTOR OF	1000	0.25	
and the second s			Const .
	COMPANY A DESCRIPTION	10000	
	and the second second second	And a second	
-+-			
	•		
		- 0	
		2	
Img	Flament	Mitta	A+94
Img credax32 genesis genmaps.spc 17-Apr-2015 15:33:49 LSecs : 64	Element	Wt%	At%
LSecs : 64	Element O K AlK	Wt% 27.86 01.10	At% 65.56 01.53
Img credax32 genesis genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 P 富Nb-REE独居石	Element O K AlK SiK	Wt% 27.86 01.10 01.54	At% 65.56 01.53 02.06
Img c:edax32'genesis'genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 P 富Nb-REE独居石	Element O K AlK SiK P K	Wt% 27.86 01.10 01.54 08.46	At% 65.56 01.53 02.06 10.28
Img credax32 genesis genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 9 63 64 64 62 0 9 64 62 0 9 64 62 0 9 6 8 0 9 6 8 0 8 0 9 6 8 10 9 8 10 10 10 10 10 10 10 10 10 10 10 10 10	Element O K AlK SiK P K ThM	Wt% 27.86 01.10 01.54 08.46 01.59	At% 65.56 01.53 02.06 10.28 00.26
Img credax32 genesis genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 P a3 - Ce 3.7 - IId	Element O K AlK SiK P K ThM CaK	Wt% 27.86 01.10 01.54 08.46 01.59 00.34	At% 65.56 01.53 02.06 10.28 00.26 00.32
Ling c:cedax32'genesis'genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 P 富Nb-REE独居石 Ce 37 - IId	Element O K AlK SiK P K ThM CaK LaL	Wt% 27.86 01.10 01.54 08.46 01.59 00.34 09.84	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67
Ling credax32 genesis genmaps.spc 17-Apr-2015 15:13:49 LSecs : 64 62 0 P 富Nb-REE独居石 14 Ce 25 - 1 14	Element O K AlK SiK P K ThM CaK LaL CeL	Wt% 27.86 01.10 01.54 08.46 01.59 00.34 09.84 19.18	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67 05.15
Ling credax32 genesis genmaps.spc 17-Apr-2015 15:39:48 LSecs : 64 a a b ce a ce a b b ce b ce b ce ce ce ce ce ce ce ce ce ce	Element O K AlK SiK P K ThM CaK LaL CeL PrL	Wt% 27.86 01.10 01.54 08.46 01.59 00.34 09.84 19.18 02.15	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67 05.15 00.57
Creedax32*genesis*genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64 62 0 9 63 64 64 65 65 64 65 66 66 67 6 6 6 7 6 6 7 6 6 7 6 7 6 7	Element O K AlK SiK P K ThM CaK LaL CeL PrL NdL	Wt% 27.86 01.10 01.54 08.46 01.59 00.34 09.84 19.18 02.15 06.66	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67 05.15 00.57 01.74
Credax32 genesis genmaps.spc 17-Apr-2015 15:39:49 LSecs : 64	Element O K AlK SiK P K ThM CaK LaL CeL PrL NdL SmL	Wt% 27.86 01.10 01.54 08.46 01.59 00.34 09.84 19.18 02.15 06.66 00.62	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67 05.15 00.57 01.74 00.16
Eredax32 genesis genmaps.spc 17-Apr-2015 15:39:48 LSecs : 64	Element O K AlK SiK P K ThM CaK LaL CeL PrL NdL SmL FeK	Wt%           27.86           01.10           01.54           08.46           01.59           00.34           09.84           19.18           02.15           06.66           00.62           04.96	At% 65.56 01.53 02.06 10.28 00.26 00.32 02.67 05.15 00.57 01.74 00.16 03.34

图 5-11 稀土多金属矿石电镜分析(富 Nb-REE 独居石)

(8) 基体杂基沉积物中的次生金红石颗粒(立方体形态,小)和柱状钛铁 矿集合体团粒。金红石富集 Zr-Nb,钛铁矿富集 Nb 杂基沉积物中见毛状蒙脱石 晶簇,石英碎屑颗粒,富 Nb 的铁金红石颗粒(图 5-12),石英碎屑、铁伊利石 等分布于杂基沉积物中。见磷酸 La 颗粒(图 5-13)、铁伊利石。



图 5-12 稀土多金属矿石电镜分析(富 Nb 的铁金红石颗粒)



图 5-13 稀土多金属矿石电镜分析(磷酸 La 颗粒)

(9)作者与中国地调局成都综合所紧密合作,该所针对贵州西部峨眉山玄 武岩古风化-沉积型稀土多金属原矿提出"预焙烧处理-选择性酸浸"冶金工艺,将 该矿粉在特定温度下焙烧,通过控制焙烧温度和焙烧时间准确破坏矿石的特定结 构,焙烧过程中不使用添加剂避免产生额外的有害废气排放,进一步控制酸性浸 出条件,选择性浸出稀土元素,避免铝、铁、钛、硅等杂质大量进入富稀土料液。 取得了 TREO 浸出率最高为 90.87%,主要杂质铝浸出率仅为 4.85%,铁浸出率 为仅 3.22%, 钛浸出率仅为 1.93%, 硅浸出率仅为 1.91%的良好指标,实现了从 稀土多金属原矿中高效选择性浸出稀土元素,并使开发利用该类型稀土矿成为可 能。

# 第6章 成矿机制研究

# 6.1 物源特征

2014年,张海^[38]从铁镁质火成岩提供物源的地质证据、微量元素证据、微量元素 证据、稀土元素证据及岩矿鉴定结果等角度,论证稀土多金属矿床物质来源于峨眉山玄 武岩。本研究报告在其基础上,从以下几个方面开展研究,进一步补充物质来源的证据。

1、区域物源基础

研究区可能提供物源的地层主要有泥盆系-二叠系。从相关地层∑REE、Sc、Ga、 Nb、Cu、Zr含量特征表明,二叠系峨眉山玄武岩组、梁山组和泥盆系独山组地层岩石 均有可能提供物质来源,从各地层与稀土多金属矿(化)层空间分布和主成矿元素含量 特征而言,峨眉山玄武岩提供物质来源的几率最大。

2、贵州西部峨眉山玄武岩含矿性特征

贵州西部峨眉山玄武岩稀土元素地球化学特征为"右倾"型,明显δCe负异常,δEu 正异常。且各段地层从老到新,∑REE、Nb、Ga、Sc总体由低变高的趋势。其中,∑REE 由 212×10⁻⁶-364×10⁻⁶,平均 247×10⁻⁶; Nb 由 29.2×10⁻⁶-43.9×10⁻⁶,平均 35.1×10⁻⁶; Ga 由 18.7×10⁻⁶-35.4×10⁻⁶,平均 25.5×10⁻⁶; Sc 由 23.3×10⁻⁶-45.2×10⁻⁶,平均 29.4×10⁻⁶,峨眉山 玄武岩蕴藏了丰富的稀土、稀有(铌等)、稀散(镓等)元素物质基础。

3、锆石 U-Pb 同位素及其稀土元素特征

从峨眉山玄武岩组二段至四段第五亚段玄武岩、凝灰岩及三件典型矿石锆石 U-Pb 同位素年代学特征而言,二者锆石年龄相同,且与峨眉山大火成岩省岩浆事件的定年结果(260~255Ma)^[1,54-56]几近相同。其中,峨眉山玄武岩组二段至四段第五亚段锆石²⁰⁶Pb/²³⁸U 表面年龄为:(261.0±3.6)-(259.1±2.2)Ma;三件典型矿石中锆石²⁰⁶Pb/²³⁸U 表面年龄为:(261.1±1.7)-(258.4±1.4)Ma。特别地,2件玄武岩和3件典型矿石样品中的 锆石,具有相似的稀土配分模式图特征,且与典型岩浆成因锆石稀土特征相符,表明这些锆石具有相同或相似的源区。因而,从进一步证实峨眉山玄武岩为古风化-沉积型稀 土多金属矿床提供物源。锆石 U-Pb 同位素和稀土元素特征而言,矿石中的锆石来源于 峨眉山玄武岩风化产物。

4、峨眉山玄武岩 Sr、Nd 同位素特征

玄武岩 (I_{sr}: 0.70579~0.76832) 和凝灰岩 (I_{sr}: 0.61795~0.71793) 的 I_{sr}存在一 定差异,可能是玄武质岩浆快速喷发,且通道并不畅,混入大量地壳物质,造成 Sr 同 位素初始值较大。而二者 I_{Nd} (0.512254~0.512378) 和εNd(t) (-0.96~+1.46) 范围均较 窄。

风化剖面 Sr、Nd 同位素特征显示:从弱风化玄武岩(0.69827~0.70429)→玄武 岩风化亚黏土层(0.69834~0.70416)→玄武岩风化残积层(0.66919~0.72385),Isr 存在总体减弱趋势,I_{Nd}和 $\epsilon$ Nd(t)表现为玄武岩风化亚黏土层(I_{Nd}: 0.512140~0.512304;  $\epsilon$ Nd(t):-3.19~+0.01)<弱风化玄武岩(I_{Nd}: 0.512354~0.512376;  $\epsilon$ Nd(t):+0.99~+1.42) <玄武岩风化残积层(I_{Nd}: 0.512285~0.512391;  $\epsilon$ Nd(t): -0.36~+1.71)的总体趋势, 与 Sm、Nd 等元素在玄武岩风化残积层富集有关。

沉积剖面 Sr、Nd 同位素特征显示: 在沉积环境中,稀土多金属矿化层 Sr 同位素 初始值 Isr为 0.70292~0.7075,Nd 同位素初始比值 I_{Nd}为 0.512182~0.512298,其εNd(t) 值为 -2.37~-0.10, Sr-Nd 同位素特区与峨眉山玄武岩 Sr-Nd 同位素特征相似,表明成 矿物质来源于峨眉山玄武岩。

从 Sr 和 Nd 同位素组成特征而言,可以判断稀土多金属矿床物质来源于峨眉山玄武 岩。具体表现为:从玄武岩、凝灰岩,到风化剖面和沉积剖面而言,Isr变化范围从大到 小,但 I_{Nd 和}εNd(t)变化较小。其中,Isr: 0.61795-0.76832,Isr低值主要为凝灰岩,Isr高 值主要为玄武岩;玄武岩风化产物中,Isr: 0.66919-0.72385;峨眉山玄武岩古风化-沉积 剖面中,Isr: 0.70292-0.7075。从源岩-风化剖面-沉积剖面,所有样品 I_{Nd}和εNd(t)值变化 范围很小。其中,I_{Nd}为 0.51214~0.512391,其εNd(t)值为 -3.19~1.71。

综合上述,从区域物源基础和贵州西部峨眉山玄武岩含矿性特征而言,峨眉山玄武 岩从空间和∑REE(平均 247×10⁻⁶)、Nb(平均 35.1×10⁻⁶)、Ga(平均 25.5×10⁻⁶)、Sc(平 均 29.4×10⁻⁶)等主成矿元素含量背景而言,峨眉山玄武岩提供成矿物质来源的可能性最 大。再从峨眉山玄武岩组二段至四段第五亚段玄武岩、凝灰岩及三件典型矿石锆石 U-Pb 同位素年代学及其稀土元素特征来看,二者锆石 ²⁰⁶Pb/²³⁸U 表面年龄分别为:(261.0±3.6)-(259.1±2.2) Ma 和(261.1±1.7)-(258.4±1.4) Ma,高度吻合,且稀土元素组成特征高度相 似,表明矿石中的锆石来源于峨眉山玄武岩风化产物。最后,依据 Sr 和 Nd 同位素组成 特征,可以发现,从玄武岩、凝灰岩,到风化剖面和沉积剖面,不论 Isr变化范围从大

到小,但 I_{Nd 和}εNd(t)变化均较小, I_{Nd}为 0.51214~0.512391,其εNd(t)值为 -3.19~1.71, Nd 同位素在风化和沉积作用过程中,较为稳定,能够示踪保持物源特征。综合上述, 可以判断稀土多金属矿床物质来源于峨眉山玄武岩。

# 6.2 风化富集

1、晚二叠世古风化条件及资源潜力

从植物化石分异度、叶相特征、植物木材化石生长纹,植物群综合指标、古地磁及 古海水温度等方面的古环境综合研究成果来看,认为晚二叠世贵州西部位于南半球低纬 度地区,推测为热带-亚热带半落叶季风雨林气候区^[14-23],有利于区域内出露地表的玄武 岩等岩浆岩及火山碎屑岩(如:凝灰岩)发生红土化化学风化。在表生作用下,高场强 元素(如:Nb)、稀土元素及铂族元素属于惰性元素,在原地得到富集和成矿,形成富 稀土、铌、镓等元素的玄武岩风化壳。经过调查评价,在赫章某地区面积约 0.6km²(图 4-2)范围内,施工 16-K 山 5 浅井,揭露峨眉山玄武岩风化剖面,剖面可划分为风化亚 粘土层、风化残积层及弱风化玄武岩,稀土矿(化)层平均真厚 5.5 米,平均品位 826×10⁶, 共伴生钛、铌、镓、锆、钪等矿产,潜在稀土金属量约 1 万吨,扩大范围,资源规模有 望近一步扩大。

2、风化剖面元素分布特征

风化剖面垂向上,各稀土元素含量变化趋势一致,具体表现为风化亚黏土层(TREO 平均值 323×10⁻⁶) <玄武岩弱风化层(TREO 平均值 388×10⁻⁶) <风化残积层(TREO 平均值 809×10⁻⁶),Al₂O₃、Fe₂O₃^T、TiO₂垂向变化特征相似,随风化程度加深而富集。 Na₂O、CaO、K₂O、MgO 垂向变化特征大体相似,随风化程度加深而流失。MnO、P₂O₅ 垂向变化规律呈凹槽状,在顶部腐殖土和风化黏土与风化残积层界面出现富集现象。 SiO₂垂向变化特征显示,随风化程度加深而存在微弱流失,但在风化亚黏土层和残积层 界面发生较强的流失。ZrO₂、Nb₂O₅、HfO₂、Ta₂O₅、V、Ga、Th、U在玄武岩风化亚黏 土层富集,表现为随风化程度加强而富集趋势;Y₂O₃和 Rb 在玄武岩风化残积层中富集; Sr 和 Ba 随风化程度加强,流失越强;而 Cr 元素在玄武岩风化剖面中较为稳定,变化不 大。

3、风化剖面元素活动性特征

采用稳定元素法,以 Ti 作为参照元素计算μ,各元素在玄武岩风化剖面中的活动 性特征显示:

(1)风化亚黏土层元素的活动性顺序为: Na(-97.6(μ平均值,下同))、 Ca、
Ba、 Sr、Mg、K(-80.8)、Eu(-58.1)、 Nd、Rb、Sm、Gd、中稀土总量(-45.2)、Tb、Pr、
Dy (-35.9)、La、Si、Y、Ho、重稀土总量(-24.9)、P、Er、TRE0(-16.0)、 Mn、
Zr、 轻稀土总量(-7.40)、Tm、Hf、 V(-0.06)、 Yb(1.62)、Sc、 Lu、Fe(11.5)、
Ga (17.8)、Nb(29.5)、Sn、 Al(36.7)、 Ce(54.1)、W、 Th、 U、Li(95.9)、
Ta (173)、 Cs (1058)、 Cr (72832)。

(2)风化残积层中元素的活动性顺序为: Na(-85.6)、Ca、Sr(-70.4)、Ba(-47.8)、W(-38.2)、Mg(-29.2)、P、Zr、Th、Si、Hf、Mn、V(-11.4)、U、Ga、Sn、Fe、Li(-0.98)、Al(2.00)、Nb、K(12.7)、Lu(48.2)、Ce(53.5)、Yb、Tm(64.5)、Er、Ho、重稀土总量(89.8)、Dy、Y、Tb(103)、TRE0(106)、Eu、轻稀土总量(109)、中稀土总量(113)、Ta、Gd、Sm、La(135)、Rb、Pr(141)、Nd、Cs(260)、Cr(67295)。

(3) 主量元素流失和富集情况可归纳为:风化亚黏土层中,除 Fe 和 Al 发生富集外,其它主量元素均发生较大的流失;风化残积层中,除 Al 和 K 发生富集外,其它主量元素均发生较大的流失。

(4)稀土元素流失和富集情况可归纳为:风化亚黏土层中,Yb、Sc、Lu、Ce发生富集,其它稀土元素均流失,且流失程度表现为中稀土总量(-45.2)>重稀土总量(-24.9)>轻稀土总量(-7.40);风化残积层中,仅Sc元素发生流失,其它稀土元素均获得富集,且流失程度表现为中稀土总量(113)>重稀土总量(89.8)>轻稀土总量(109),特别是Lu、Ce、Yb富集程度相对最小;风化过程中,亚黏土层中稀土元素

释放出来,并被黏土矿物吸附,在流水作用下,迁移到风化沉积层富集。

(5)微量元素流失和富集情况可归纳为:风化亚黏土层中,Ba、Sr、Rb、Zr、 Hf、V发生一定程度流失,其它微量元素均富集,尤其是Li、Ta、Cs、Cr富集程 度最大,基本未发生流失;风化残积层中,仅Nb、Ta、Rb、Cs、Cr元素发生富集,其 它微量元素均发生一定程度流失。

4、主成矿元素赋存状态

(1)采用透射电镜明场模式、电子衍射和能谱仪检测方法,样品矿物组成为锐钛矿、 金红石、钛铁矿、磁铁矿、赤铁矿(褐铁矿)、钾长石、高岭石等。检测到含 P、Se、

Zr、Sn 成分颗粒。近两千个视域及颗粒进行了 X 射线能谱成分定性分析,均未检测到 含铌、稀土元素成分的矿物颗粒。

(2)扫描电镜发现: (1) K 元素较为分散,而 Al、Fe、Ti、Si及 P 在局部富集; (2)轻稀土元素中,La、Ce、及 Pr 在局部富集,而 Nd 元素较为分散; (3)中稀土元素中, Tb 和 Dy 在局部富集,而 Sm、Eu 及 Gd 元素较为分散; (4)重稀土元素中,Sc 局部明显 富集,Er 和 Tm 局部轻微富集,而 Yb、Lu 及 Y 元素较为分散; (5)微量元素中,Zr、 Ga 及 Nb 元素均较为分散。

(3)采用传统浸取剂(2%硫酸铵溶液)开展多种浸出方法试验,振荡、搅拌浸出稀土时,稀土浸出率保持在31.1-41%之间,而柱淋洗浸出稀土浸出率达53.9%,其中, Ce元素含量占稀土总量30%左右,但浸出率最低(6.6-14.3×10⁻²,平均8.65×10⁻²),镓、 钪等元素不被浸出或浸出率相当低。而选择盐酸浓度试验条件为浸出液固比6:1,盐酸浓 度变量2%-31%,浸出温度为60℃,浸出时间为1h,随着盐酸浓度的增加,稀土浸出率增加,从64.86-86.29%。

(4)采用稀土提取-沉钛-富集铌(钽)流程实验,用10%盐酸优先浸出稀土,稀土
浸出率73.83%,镓浸出率78%,其中铈浸出率94.99%,同时铝铁等杂质元素浸出率在
40-70%。浸渣中钛、铌(钽)等元素获得富集,采用硫酸焙烧法水浸浸出79%左右的铌(钽),89%的钛,代表矿石综合利用经济价值大。

综合上述,采用透射电镜明场模式、电子衍射和能谱仪检测方法均未发现独立的稀 土矿物。采样传统浸取剂(2%硫酸铵溶液)开展多种浸出方法试验,振荡、搅拌浸出 稀土时,稀土浸取率,Ce浸出率最低。而用盐酸浸取,随浓度的增加,稀土浸出率增 加,最高达86.29%。因而推测稀土还可能存在其他的相态,比如胶态沉积相稀土、矿 物相稀土或者类质同相稀土等。采用稀土提取-沉钛-富集铌(钽)流程实验,稀土浸出 率73.83%,镓浸出率78%,其中铈浸出率94.99%,铌(钽)浸出率79%,钛浸出率89%, 代表矿石综合利用具有一定经济价值。

# 6.3 沉积分异

### 1、晚二叠世沉积条件及资源潜力

晚二叠世,贵州西部以海侵为主。在总的海侵背景下,海水进退频繁,造成了峨 眉山玄武岩及其风化产物风化剥蚀程度的不断加深。海侵海退过程中,伴随环境变化 和物理化学作用,稀土、铌、镓等元素发生了分异和沉积,并形成具有特色的峨眉山 玄武岩古风化-沉积型稀土多金属矿床。

峨眉山玄武岩古风化-沉积型稀土多金属矿(化)层主要发育于峨眉山玄武岩古风 化剥蚀面之上,宣威组地层底部,为一套铁铝质粘土岩或粉砂岩。其中,Nb₂O₅在粘土 岩和粉砂岩中的平均值分别为 234.1×10⁻⁶、162.2×10⁻⁶;ΣREE 在粘土岩和粉砂岩中的平 均值分别为 683×10⁻⁶、617×10⁻⁶,背景值均较高。初步预测该区潜在稀土氧化物总量

(TREO)资源量 200 万吨, 铌氧化物资源量约 50 万吨, 已形成独立超大型稀土多金属矿床。事实上,前期勘查工作已估算稀土矿资源量约 100 多万吨(超大型矿床规模),如果将评价区扩展到整个黔北,乃至滇东, 铌、稀土等矿产资源量潜力巨大, 有望成为我国新类型稀土矿床。

### 2、沉积过程中元素分异研究

### 按成矿元素走向模拟各元素分异特征显示:

(1)稀土总量由低到高,各稀土元素、P₂O₅、Sr、Sr/Ba、La_N/Yb_N及SiO₂变化趋势与稀土总量变化趋势一致,而TFe₂O₃、TiO₂、δEu、δCe、Cr、Sc及V趋势大致相反,Al₂O₃、Li先富集再流失。

(2) Nb₂O₅含量由低到高,Zr/Rb、Zr/Al、δCe、Sn、ZrO₂、HfO₂、Ta₂O₅、Ga、Th、
 及U变化趋势与其变化趋势一致,而 P₂O₅、δEu 及 Sr 趋势大致相反,Li、Al₂O₃、Sr/Ba
 先富集再流失。

(3) Ga 含量由低到高, Zr/Al 和 Li 与其变化趋势一致, Al₂O₃和 TiO₂ 与其趋势大 致相反。在 Al₂O₃ 富集过程中,稀土元素也存在富集情况,大多是在 Sr/Ba 较高的情况。 而 Nb₂O₅、ZrO₂、HfO₂、Ta₂O₅、Ga、Th 及 U 在 Zr/Rb 比值较高的区段得到富集。

(4) Al₂O₃ 含量由低到高, Sn、ZrO₂, HfO₂, Ta₂O₅, Ga、Th、及U总体变化趋势与 其变化趋势相似,而Li、Sr、W、SiO₂及稀土总量先富集再流失。其中,随Al₂O₃ 富集 趋势,稀土总量在Al₂O₃ 含量范围为 42.5-45.0 达到最高值,之后随铝富集而降低,总体 趋势中,存在多个异常富集区段,往往与Zr/Rb 值较为吻合,代表高能水环境,有利于 Al₂O₃ 与其它元素分异富集。

(5) TFe₂O₃含量由低到高, MgO、MnO、V/Sc、Cr 变化趋势与其变化趋势一致, 而 Al₂O₃、SiO₂、K₂O及 Na₂O 趋势大致相反, P₂O₅、Sr/Ba、Sn、ZrO₂、Nb₂O₅、HfO₂、 Ta₂O₅、Sc、Sr、W 先富集再贫化, Th、U、Zr/Rb、Zr/Al 等呈现锯齿状趋势。

(6) 矿石中各稀土元素氧化物相对玄武岩风化物而言: ①伴随稀土氧化物总量

(TREO,下同)的富集,Sc、Eu₂O₃和Lu₂O₃发生流失;②伴随Nb₂O₅的富集,Sc、Y₂O₃、Gd₂O₃、Sm₂O₃、Nd₂O₃、Eu₂O₃和Lu₂O₃发生流失;③伴随Ga的富集,Nd₂O₃、Pr₆O₁₁、Eu₂O₃和Sc发生流失;④伴随Al₂O₃的富集,La₂O₃、Dy₂O₃、Tb₄O₇、Gd₂O₃、Sm₂O₃、Pr₆O₁₁、Nd₂O₃发生流失;⑤伴随TFe₂O₃的富集,Dy₂O₃、Tb₄O₇、Y₂O₃、Pr₆O₁₁、Sm₂O₃、Gd₂O₃和Eu₂O₃发生流失。因而,不同的元素在沉积过程中的富集,往往会造成稀土元素内部的分异。

(7)古沉积环境指标研究表明,主成矿元素在环境变迁过程中,发生系列分异: ①古气候(CIA)、古水深(Mn/Fe和Zr/Al)及古水动力条件(Zr/Rb)指示矿石形成 古环境为气候炎热、潮湿,水动力震荡的近岸环境。②古盐度Sr/Ba越大,古氧化还原 指标V/Cr、V/Sc、δEu及δCe由贫氧环境向还原环境变化,轻重稀土分异越大(La_N/Yb_N), 稀土总量越大;③古水动力条件Zr/Rb越大、古氧化还原指标V/Cr、V/Sc、δEu及δCe 由贫氧环境向还原环境变化,La_N/Yb_N越小,Nb₂O₅越来越富集。④古水动力条件Zr/Rb 越大,古氧化还原指标V/Cr和V/Sc、δEu及δCe由贫氧环境向还原环境变化,Ga总体 越高;⑤古氧化还原指标V/Cr和V/Sc、δEu及δCe由贫氧环境向还原环境变化,古盐 度Sr/Ba总体越大,Al₂O₃总体越高;⑥古水动力条件Zr/Rb越大,古氧化还原指标V/Cr 和V/Sc、δEu及δCe处于贫氧环境,TFe₂O₃总体越高。

### 按岩性模拟各元素分异

(1)表生风化作用下,玄武岩中 Al 元素表现为随风化程度增强,逐渐富集,而 Si 元素则变现为亏损;在搬运过程中,由近到远,Al 元素亦逐渐增强,而 Si 元素表现 先轻微富集,直到物理化学作用突变,铝土矿形成阶段,Si 元素迅速亏损;总体而言, 玄武岩风化程度由弱变强,离源区由近到远,总体铝硅比由小变大。

(2) Fe、Ga、Zr、Nb 元素在玄武岩风化过程中,变现为随风化程度加强而富集。 但在次生搬运-沉积过程中,Fe 元素随着搬运距离由近到远逐渐亏损;Ga 元素表现为先 逐渐富集(粘土岩中最富集),而后逐渐亏损;Zr、Nb 元素则表现为越来越富。

(3) Ti、Sc、REE 元素在玄武岩风化过程中,变现为随风化程度先富集再亏损。 其中,Ti、Sc 元素在次强风化程度富集程度最强,而后逐渐亏损。而稀土元素总体在中 等风化程度最富集,而后逐渐亏损。符合典型风化淋积型稀土多金属矿床特征。Ti、Sc 元素在次生作用下地球化学行为相对稳定,变化不大。而轻、重稀土元素在次生沉积作 用过程中发生分异。其中,轻稀土元素在铝土岩阶段得到最大化富集,随后亏损;而重 稀土元素在粘土岩阶段得到最大化富集,随后亏损。 从云南滇东南晚二叠世龙潭组铝土矿带、桂西平果-靖西-德保-田阳-田东晚二叠世 铝土矿成矿带及本文研究过程发现的威宁大寨宣威组铝多金属矿点、稀土多金属矿点及 铁多金属矿点而言,可以推断,玄武岩古风化-沉积地质作用过程,完全可能形成稀土-铌-镓-铝-铁多金属成矿系列。

#### 3、赋存状态

典型稀土多金属矿石样品的扫描电镜面扫描分析发现: (1)样品主要矿物成分为 粘土矿物、铁矿物、钛矿物,具有明显的沉积特征; (2)Si和K元素分布较为吻合, Fe和Ti元素分布也较为吻合,La、Ce、Pr与Ti元素分布特征较为吻合,少量与P元 素吻合;Al存在较多富集区域,而P在局部富集;La、Ce、、Pr、Tb和Dy在局部富 集,而Nd、Sm、Eu、Gd及重稀土元素元素总体分散;Zr、Ga及Nb元素分布均较为 分散。(3)S214-03样品富Fe团粒形成于氧化程度较低,较强的水动力条件,多次成 球的沉积环境。杂基沉积物中散染状分布金红石、钛铁矿、独居石,Nb都分散赋存于 独居石中,未形成Nb的独立矿物。此外,还发现金红石富集Zr-Nb、钛铁矿富集Nb、 富Nb的铁金红石颗粒及磷酸La颗粒。(4)中国地调局成都综合所针对贵州西部峨眉 山玄武岩古风化-沉积型稀土多金属原矿提出"预焙烧处理-选择性酸浸"冶金工艺,取得 了TREO浸出率最高为90.87%的良好指标。

# 6.4 成矿机理

峨眉山玄武岩本身蕴藏着丰富的稀土、铌、镓、铝及铁等元素,在晚二叠世利于风化的环境下,伴随母岩中 Na、Ca、K 等容易流失,而在原地进一步富集,富集系数约1-5 倍。随后,这些风化产物在贵州西部总体海侵海退环境下,不断被海水剥蚀改造,伴随着环境变化和物理化学作用,稀土、铌、镓等元素发生了分异和沉积,并在合适的沉积环境中,富集-沉淀分异-成岩成矿,从而形成这一具有特色的峨眉山玄武岩古风化-沉积型稀土多金属矿床系列(图 6-1)。具体如下:



图 6-1 峨眉山玄武岩古风化沉积型稀土多金属矿床成矿-找矿模式图

#### 1、物源阶段:

峨眉山玄武岩组各段地层从老到新,稀土总量(∑REE)、Nb、Ga、Sc含量总体由 低变高的趋势,∑REE 由 212×10⁻⁶-364×10⁻⁶,平均 247×10⁻⁶,Nb 由 29.2×10⁻⁶-43.9×10⁻⁶, 平均 35.1×10⁻⁶;Ga 由 18.7×10⁻⁶-35.4×10⁻⁶,平均 25.5×10⁻⁶;Sc 由 23.3×10⁻⁶-45.2×10⁻⁶, 平均 29.4×10⁻⁶,背景值均较高。据Xu等估计,其初始体积可能≥3.8 Mkm^{3[4]},玄武岩比 重 一 般 2.8 ~ 3.3 t/m³,因 而,理论上峨 眉 山 玄 武 岩 中 所 蕴 藏 的 ∑REE 约 2.62×10¹⁴-3.08×10¹⁴t,Nb 约 3.73×10¹²-4.39×10¹²t,Ga 约 2.71×10¹²-3.20×10¹²t,Sc 约 3.13×10¹²-3.69×10¹²t,这为峨眉山玄武岩风化淋积型稀土多金属矿提供丰富的物质基础。

### 2、风化富集阶段:

晚二叠纪贵州西部地区的古纬度为 2.6°~4.5°S^[12-13], 气候炎热,雨量充沛^[14-23], 有 利于区域内出露地表的玄武岩等岩浆岩及火山碎屑岩(如:凝灰岩)发生红土化化学风 化。在表生作用下,峨眉山玄武岩富含的稀有元素(如:Nb)、稀散元素(如:Nb) 稀土元素在原地得到进一步富集,形成富稀土、铌、镓等元素的玄武岩风化壳。

风化剖面垂向上,各稀土元素含量变化趋势一致,具体表现为风化亚黏土层(TREO 平均值 323×10⁻⁶) <玄武岩弱风化层(TREO 平均值 388×10⁻⁶) <风化残积层(TREO 平均值 809×10⁻⁶),Nb₂O₅、Ga 随风化程度加强而富集,主要在玄武岩风化亚黏土层富 集。其中,风化亚黏土层中,Yb、Sc、Lu、Ce发生富集,其它稀土元素流失程度表 现为 TMREO(-45.2) > THREO(-24.9) > TLREO(-7.40);风化残积层中,仅Sc 元素 发生流失,其它稀土元素均获得富集,且富集程度表现为 TMREO(113) > THREO(89.8) > TLREO(109);风化过程中,亚黏土层中稀土元素释放出来,并被黏土矿物吸附,在流水作用下,迁移到风化残积层富集。

典型峨眉山玄武岩风化淋积型稀土多金属矿石透射电镜、电子衍射和能谱仪检测, 均未发现含铌、稀土元素成分的矿物颗粒。扫描电镜发现 La、Ce、、Pr、Tb、Dy、Er 及 Tm 在局部富集,其它稀土元素、Ga、Nb 较为分散。采用传统浸取剂(2%硫酸铵溶 液)开展多种浸出方法试验,稀土浸出率保持在 31.18-53.85%之间,镓、钪等元素不被 浸出或浸出率相当低。其中,Ce 元素浸出率最低,平均仅 8.65×10⁻²。选择盐酸浓度试 验条件为浸出液固比 6:1,盐酸浓度变量 2%-31%,浸出温度为 60℃,浸出时间为 1h, 随着盐酸浓度的增加,稀土浸出率增加,从 64.9-86.3%。因而推测,除存在 31.18-53.85% 离子吸附型稀土外,还可能存在胶态沉积相稀土、矿物相稀土或者类质同相稀土等形式。

总体而言,峨眉山玄武岩在表生风化作用下,铌、镓、稀土等元素富集 1-4 倍,能

够形成工业要求的相应矿床,通过赫章 16-K 山 5 工程施工,证明量峨眉山玄武岩风化 淋积型稀土多金属矿的存在。滇东-贵州西部,峨眉山玄武岩分布面积约 2.5 万 km²,风 化残积层按 5.5 米厚,矿石比重一般 1.8~2.3 t/m³,理论上峨眉山玄武岩风化残积层中 所蕴藏的∑REE 约 2.00×10⁹-2.56×10⁹t,这为后期剥蚀-搬运-沉积过程中,峨眉山玄武岩 古风化-沉积型稀土多金属矿提供丰富的物质基础。

3、沉积分异与成矿阶段:

晚二叠世,贵州西部以海侵为主,并以长兴期海侵范围最大、延续时间最长,最大海侵范围至威宁二塘及盘县土城一带。同时,该期贵州古地势由北北西向南南东倾斜,海水先由南南东方向侵入,然后由东向西淹没,形成海水极浅的陆表海。在总的海侵背景下,海水进退频繁,造成了滇东-贵州西部峨眉山玄武岩风化产物不断剥蚀搬运进入海水体系中,伴随着环境体系变化,在一系列的物理化学作用下,发生了元素分异,并沉积成岩成矿。

海进过程中,高能海水不仅大量剥蚀风化产物,其所带的丰富 K⁺、Na⁺、Cl⁻、SO4²⁻ 等离子,将离子型稀土浸取出来,带入海水体系内。同时,以矿物相形式存在的稀土、 铌、铁、钛、锆等矿物也以机械形式迁移进入海水中。

海退过程中,以矿物相形式存在的稀土、铌、铁、钛、锆等矿物,在高能的近岸环 境,随着重力分异而与轻矿物发生分离,形成以铁为主的多金属矿床。海水中,以离子 态形式迁移的稀土元素,由贫氧环境向还原环境变化,重稀土元素先以稳定形式沉淀, 而发生轻重稀分异,形成以稀土为主的稀土多金属矿床。而 Al 元素容易形成稳定络合 物,迁移过程中可携带稀土、铌、镓等元素,较远距离迁移,并在合适的环境聚集成矿, 形成以铝为主的铝多金属矿床。从而形成了具有特色的峨眉山玄武岩古风化-沉积型稀 土多金属矿床系列。

## 6.5 找矿模型

区内峨眉山玄武岩古风化沉积型稀土多金属系列矿床严格受向斜和地层控制,且与 岩相古地理环境和玄武岩及火山碎屑岩厚度关系密切(表 6-1),结合峨眉山玄武岩古 风化沉积型稀土多金属矿床成矿-找矿模式图(图 6-1),总结出峨眉山玄武岩古风化沉 积型稀土多金属成矿系列找矿流程:第一步,在晚二叠世古地势较高,且峨眉山玄武岩 较厚区域,寻找残存的峨眉山玄武岩风化淋积型稀土多金属矿;第二步,在临近区域的 向斜构造内,寻找宣威组底部与铁矿伴共生的稀土多金属矿;第三步,沿晚二叠世海侵海退方向,依次寻找稀土为主的稀土多金属矿和与铝土矿伴共生的稀土多金属矿。按此理论,先后通在赫章某地发现峨眉山玄武岩风化淋积型稀土多金属矿,威宁炉山铁矿区发现铁(稀土-铌)多金属矿,威宁溪街稀土多金属矿,威宁大寨铝(稀土-铌)多金属矿,验证了成矿找矿模型的适用性。

表 6-1 贵州西部峨眉山玄武岩古风化-沉积型稀土多金属矿床系列区域找矿模式

	4	土		特征描述
	1	寸 1止	峨眉山玄武岩风化淋积型	峨眉山玄武岩古风化沉积型
		构造部位	-	上扬子板块西南缘
成矿 景与	背 成	赋存层位	峨眉山玄武岩组现代风化壳,常 富集铌、稀土、镓、钛等元素	峨眉山玄武岩组古风化剥蚀面之上,宣威组地层底 部,常与铁(钛)矿呈异位共生关系,常与铝质岩- 铝土矿呈同位共生关系,多富集铌、镓等元素。
矿环	境	岩石组合	粘土矿物	铝质岩、铝土矿、粘土岩、粘土、粉砂岩
		沉积环境		曲流河相、 陆地边缘相区、上部潮坪相
		矿体形态	似层状	层状、似层状
		矿石类型	松散状	致密块状、豆鲕状
		工业类型	暂定为风化淋积型稀土多金属矿	暂定为铝土质-铝土岩型稀土多金属矿
		矿物组合	主要为粘土矿物、赤铁矿、褐铁 矿填隙物等组分构成	高岭石、蒙脱石、高岭石、赤铁矿、蒙脱石、伊利石 及勃姆石
矿床:	矿床地 质基本	结构构造	结构以松散状为主;构造以松散 碎屑状为主。	泥晶状结构为主,豆鲕状次之,致密块状构造、土状 构造及层状构造
质基		矿体厚度	范围 4.00-7.00m, 平均 5.50m。	范围 1.10-6.55m, 平均 3.09m。
特征	E	矿石品位	847-1146×10 ⁻⁶ ,平均品位为 973×10 ⁻⁶ ;共伴生TiO ₂ 平均品位 5.79×10 ⁻⁶ ,Nb ₂ O ₅ 平均品位 71.7×10 ⁻⁶ ,Ta ₂ O ₅ 平均品位 4.48×10 ⁻⁶ ,ZrO ₂ 平均品位 372×10 ⁻⁶ ,Sc平均品位31.3×10 ⁻⁶	TRE ₂ O ₃ 800-2032×10 ⁻⁶ , 平均 1000×10 ⁻⁶ , Nb ₂ O ₅ 200-1000×10 ⁻⁶ , 平均 500×10 ⁻⁶ , TFe 28.0-40.4%, 平均 30.9%, Al ₂ O ₃ 45.0-65.4%, 平均 50.9%。
		伴生矿产	钛、锆、镓	钛、镓、钪、耐火粘土
		成因机制	峨眉山玄武岩组岩石风化淋积	峨眉山玄武岩组岩石红土化提供矿源,经风化富集和 化学及机械沉积分异作用
	典	型矿床	赫章某玄武岩风化淋积型稀 土多金属矿	威宁炉山铁多金属矿 威宁某铝质-铝土矿型稀土多金属矿
		地层标志	峨眉山玄武岩现代风化壳	峨眉山玄武岩组古风化剥蚀面之上,宣威组一段地层 底部,一套含铁铝质粘土岩-粉砂岩系,铁矿与稀土矿 呈异位共生关系,一般铁矿处于稀土矿层之下
找		构造标志		向斜
1 标志	岩	相古地理标志	地势高的陆相区域	曲流河相、 陆地边缘相区、上部潮坪相,一般陆相 环境、且晚二叠世古地势越高越有利成矿。
		矿化标志	峨眉山玄武岩风化产物厚	发育铁矿层的区域,一定发育稀土矿层,发育稀土矿 层的地方,不一定发育铁矿层。
	붇	合组合标志	粘土矿物、褐铁矿	含矿岩系为的一套含铁质、铝质粘土岩-粉砂质泥岩

续表 6-1 贵州西部峨眉山玄武岩古风化-沉积型稀土多金属矿床系列区域找矿模式			
	特征	特征描述	
		峨眉山玄武岩风化淋积型	峨眉山玄武岩古风化沉积型
找矿手段及方法	以往资料的综合 研究应用	全面收集以往地物化遥成果,加强综合研究,类比相似地质条件下的找矿的成功经验, 采用地质成矿新理论、新技术、新方法,圈定找矿靶区,为工作部署提供依据。	
	大比例尺地质测 量	寻找玄武岩风化堆积厚的区域	在总结控矿条件、成矿规律的基础上,结合找矿标志, 重点对区内玄武岩赋矿地层岩性、岩相、成矿与控矿 构造进行地表控制,推断研究矿体可能空间位置。
	工程查证	浅钻	在成矿有利地段布置探槽、钻探工程查证
#### 第7章 结论

通过上述研究,得到以下主要结论:

1. 峨眉山玄武岩空间上紧密与稀土多金属矿(化)层直接接触,且富集 ∑REE(平均 247×10⁻⁶)、Nb(平均 35.1×10⁻⁶)、Ga(平均 25.5×10⁻⁶)、Sc(平均 29.4×10⁻⁶)等主成矿元素。同时,峨眉山玄武岩组二段至四段第五亚段玄武岩(或 凝灰岩)和三件典型矿石锆石²⁰⁶Pb/²³⁸U表面年龄分别为:(261.0±3.6)-(259.1±2.2) Ma 和(261.1±1.7)-(258.4±1.4) Ma,高度吻合,且稀土元素组成特征高度相似。 此外,依据 Sr 和 Nd 同位素组成特征显示,从玄武岩、凝灰岩,到风化剖面和 沉积剖面,Isr变化范围较大,但 I_{Nd} 和εNd(t)变化均较小,I_{Nd} 为 0.51214~0.512391, 其εNd(t)值为 -3.19~1.71,与已有峨眉山玄武岩 I_{Nd} 和εNd(t)相似。因而,可以判 断稀土多金属矿床成矿物质来源于峨眉山玄武岩。

2. 晚二叠纪贵州西部地区的古地理环境利于峨眉山玄武岩风化壳发育,稀 土元素获得约 1-5 倍富集, 铌、镓元素获得获得约 1-2 倍富集。风化剖面垂向上, 各稀土元素含量变化趋势一致,具体表现为风化亚黏土层(∑REE 平均值 323×10⁻⁶) <玄武岩弱风化层(∑REE 平均值 388×10⁻⁶) <风化残积层(∑REE 平均值 809×10⁻⁶),Nb₂O₅、Ga 随风化程度加强而富集,主要在玄武岩风化亚黏 土层富集。其中,风化亚黏土层中,Yb、Sc、Lu、Ce 发生富集,其它稀土元 素流失:中稀土元素 > 重稀土元素 > 轻稀土元素;风化残积层中,仅Sc 元素发 生流失,其它稀土元素均获得富集:中稀土元素 > 重稀土元素 > 轻稀土元素。典 型矿石稀土赋存状态研究发现,除存在约 31.18%-53.85%离子吸附型稀土外,还 可能存在胶态沉积相稀土、矿物相稀土或者类质同相稀土等形式。

3. 晚二叠世,贵州西部以海侵为主。海进过程中,高能海水不仅大量剥蚀 风化产物,其所带的丰富 K⁺、Na⁺、Cl⁻、SO4²⁻等离子,将离子型稀土浸取出来, 带入海水体系内。同时,以矿物相形式存在的稀土、铌、铁、钛、锆等矿物也以 机械形式迁移进入海水中。海退过程中,以矿物相形式存在的稀土、铌、铁、钛、 锆等矿物,在高能的近岸环境,随着重力分异而与轻矿物发生分离,形成以铁为 主的多金属矿床。海水中,以离子态形式迁移的稀土元素,由贫氧环境向还原环

境变化,重稀土元素先以稳定形式沉淀,而发生轻重稀分异,形成以稀土为主的稀土多金属矿床。而 Al 元素容易形成稳定络合物,迁移过程中可携带稀土、铌、镓等元素,较远距离迁移,并在合适的环境聚集成矿,形成以铝为主的铝多金属矿床。从而形成了具有特色的峨眉山玄武岩古风化-沉积型稀土多金属矿床系列。

4. 峨眉山玄武岩本身蕴藏着丰富的稀土、铌、镓、铁、铝等物质,在晚二 叠世利于风化的环境下,伴随母岩中 Na、Ca、K 等元素流失,而在原地进一步 富集,富集系数约1-5倍。随后,这些风化产物在贵州西部总体海侵海退环境下, 不断被海水剥蚀改造,伴随着环境变化和物理化学作用,稀土、铌、镓、铁、铝 等元素发生了沉积分异,从而形成这一具有特色的峨眉山玄武岩古风化-沉积型 稀土多金属矿床,并建立了成矿找矿模型。

5. 总结出峨眉山玄武岩古风化沉积型稀土多金属成矿系列找矿流程:第一步,在晚二叠世古地势较高,且峨眉山玄武岩较厚区域,寻找残存的峨眉山玄武岩风化淋积型稀土多金属矿;第二步,在临近区域的向斜构造内,寻找宣威组底部与铁矿伴共生的稀土多金属矿;第三步,沿晚二叠世海侵海退方向,依次寻找稀土为主的稀土多金属矿和与铝土矿伴共生的稀土多金属矿。按此理论,先后在赫章发现峨眉山玄武岩风化淋积型稀土多金属矿,威宁炉山发现铁(稀土-铌)多金属矿,威宁溪街发现稀土(铌-钛)多金属矿,威宁大寨铝(镓-稀土-铌)多金属矿,验证了成矿找矿模型的适用性。

#### 致谢

转眼间,博士后研究工作即将结束,回忆过往,感慨颇多。我自 2008 年开始,一直从事三稀矿产资源的勘查和研究工作。2011 年为了更好完成博士论文, 直接到贵州省地矿局一一三地质大队工作,先后负责"贵州省威宁-水城铁矿整装 勘查"、"乌蒙山优势矿产综合地质调查评价"和"贵州赫章野马川地区玄武岩风化 壳型稀土资源调查"等生产项目及配套科研项目。同时先后在成都理工大学、中 国科学院地球化学研究所开展博士、博士后研究工作,正是由于这些生产和科研 项目的支撑,才有机会推动贵州毕节-六盘水市能源资源基地建设、推动四家从 事三稀资源开发的公司建设,并在公司担任总经理,实现科技成果转化。不由得, 万分感谢给予帮助的老师、领导和同事:

首先,非常感谢合作导师温汉捷研究员,给予科研工作方方面面的指导,从 论文选题、室内外研究、数据处理、信息提取、撰写成文等方面都投入了大量的 时间和精力,更是为贵州毕节-六盘水市能源资源基地建设作出默默努力和贡献。

也需要感谢国家重点研发计划课题(2017YFC0602503)、贵州省地矿局黔 地矿科合(2015)05 号、贵州省科技计划项目黔科合基础[2017]1092、贵州威宁 -水城地区铁矿整装勘查项目、贵州乌蒙山区优势矿产综合地质调查项目、贵州 毕节-六盘水地区能源资源基地综合地质调查项目、贵州赫章野马川地区玄武岩 风化壳型稀土资源调查项目联合资助,让我有经费开展研究。

再要感谢中国科学院地球化学研究所各位领导和老师,给予我大量帮助,在 此我要感谢刘世荣研究员、罗崇光研究员、胡晓燕老师、周正兵师弟、崔燚师弟 等。同时,也要感谢贵州地矿局周琦研究员的持续指导、贵州省地矿局一一三地 质大队三稀项目组和贵州地质矿产中心实验室选冶中心给予的帮助和支持。

最后,我要感谢我的父母!可以说,这份研究报告是我父母 34 年来不辞辛 劳的成果。没有您们方方面面的支持,不可能有我今天的成绩!也要感谢我的爱 人郭佩佩,是您把家的温馨给予了我,让我在人生最困难的时候得到了奋斗的动 力!也要感谢我的女儿张欣怡和张怡艾,您们的到来,让爸爸感觉人生的美妙!

参考文献

[1]孟昌忠,陈旸,张莹华,等.峨眉山大火成岩省去顶作用与黔西铁-多金属矿床成因:锆石 U-Pb 同位素年代学约束[J].中国科学:地球科学,2015,45:1469-1480.

[2]Campbell I H.Large igneous provinces and the mantle plume hypothesis. Elements[J],

2005,1:265-269.

[3]Liu Guang-yi,Zhong Hong,Xia Liu-yin,et al.Improving copper flotation recovery fromare fractory copper porphyry ore by using ethoxycarbonyl thioureaas acollector[J].Minerals Engineering,2011,24 (8) :817-824.

[4]Xu Y G, He B. Thick and high velocity crust in the Emeishan large igneous province, SW China: Evidence for crustal growth by magmatic underplating/intreplating[J]. Spec Pap Geol Soc Am, 2007,430: 841–858

[5]Coffin M F, Eldholm O. Large igneous provinces, crustal structures, dimensions and external consequences[J]. Rev Geophys, 1994,32: 1-36.

[6] Ali J R, Thompson G M, Zhou M F, et al. Emeishan large igneous province, SW China[J]. Lithos, 2005,79: 475–489.

[7]Zhang M, O'Reilly S Y, Wang K L, et al.Flood basalts and metallogeny: The lithospheric mantle connection[J]. Earth-Sci Rev, 2008, 86: 145–174

[8]Zhou M F, Robinson P T, Lesher C M, et al.Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits[J], Sichuan province, SW China. J Petrol,2005, 46: 2253–2280

[9]Eremin N I.Platform magmatism: Geology and minerageny. Geol Ore Deposit[J], 2010,52: 77–80

[10]Song X Y, Zhou M F, Cao Z M, et al. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plumet[J]. Geol Soc London, 161: 773-781.

[11]Saunders A D,Jones S M,Morgan L A, et al. Regional uplift associated with continental large igneous provinces:The roles of mantle plumes and the lithosphere. Chem Geol, 2007,241: 282–318.

[12]刘成英,朱日祥.试论峨眉山玄武岩的地球动力学含义[J].地学前缘,2009,16(2):52-69.

[13]Wang, J., Li, H., 1998. Paleo-latitude variation of Guizhou terrain from Devonian to Cretaceous[J].Chinese Journal of Geochemistry 17(4), 356-361.

[14] 周国正,贵州省织金矿区晚二叠世晚期潮坪相沉积特征[J].中国煤炭地质,2009,21(7):19-23.

[15]熊孟辉,秦勇,易同生.贵州晚二叠世含煤岩系沉积格局及其构造控制[J].中国矿业大学学报,2006,35(6):775-752.

[16]黄昔容,陶述平.贵州织金地区晚二叠世的沉积环境分析[J].贵州地质,1999,16(4):301-306.

[17]李星学.中国地质时期植物群[M].广州:广州科技出版社,1995.

[18]郭英廷.贵州西部晚二叠世古气候[J].中国煤田地质,1990,2(3):18-20.

[19]郭英廷.贵州西部晚二叠世含煤岩系的植物古生态[J]煤炭学报,1990,15(l):48-49.

[20]郭英廷.贵州西部晚二叠世大羽羊齿类植物的生态[J].煤田地质与勘探,1991.2:12-15.

[21] 杨瑞东,付银,梁福凉等.贵州晚二叠世成煤环境及聚煤模式[J].贵州工学院院报,1990,19(4):51-55.

[22]桑惕,王立亭,叶念曾,贵州晚二叠世岩相古地理特征[J].贵州地质,1986,2:105-152.

[23]中科院南京古生物研究所.黔西滇东晚二叠世含煤岩系和古生物群[J].北京:科学出版 社.1980:277.

[24]黄训华.威宁鹿房稀土矿地质特征及成矿作用初步分析[J].贵州地质,1997,14(4):328-333. [25]杨瑞东,王伟,鲍淼,王强,等.贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征 [J],2006,25(增刊);205-208.

[26]张震,戴朝辉. 贵州稀土矿及成矿地质特征[J]. 矿产与地质, 2010, 24(5): 433-439.

[27]贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987,1~698.

[28] 王利东. 会泽水槽子铜矿床及成因探讨[J]. 云南地质, 2002.21(3):293-299.

[29] 王居里,郭健,刘忠奎,等.滇东北峨眉山玄武岩区的沉积型铜矿床[J].矿床地质,2006,25(6):663-671.

[30]王砚耕,王尚彦.峨眉山大火成岩省与玄武岩铜矿[J]. 贵州地质,2003.20(1):5-10.

[31]王伟,杨瑞东,鲍淼,等. 贵州峨眉山玄武岩区风化壳与成矿关系[J]. 贵州大学学报(自然 科学版),2006,23(4),366-370.

[32]杨瑞东.贵州西部中上二叠统界线附近风化壳类型及成矿作用[J].矿物学报,2007,27(1): 41-48.

[33]王强,杨瑞东,鲍淼.贵州毕节地区煤层中稀土元素在含煤地层划分与对比中应用探讨[J]. 沉积学报,2008, 26(1), 21-27.

[34]Lingjie Zhou,Zhengwei Zhang,Yujiao Li.Geological and geochemical characteristics in the paleo-weatheringcrust sedimentary type REE deposits, western Guizhou, China[J].2013,73:184-198.

[35]Deng J, Wang Q-F, Yang S-J, et al. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences[J], 2010, 37: 412-424.

[36]Wang Q-F, Deng J, Liu X-F. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China[J]. Journal of Asian Earth Sciences, 2010, 39: 701-712.

[37] 张青伟, 缪秉魁, 王登红. 桂西铝土矿中伴生元素研究现状 [J]. 矿物学报, 2011, (增刊):917-918.

[38]张海.贵州西部地区稀土矿床地质地球化学特征及其成矿机制研究[D].成都理工大学博士学位论文.2014:1-80.

[39]谢学锦,程志中,等.中国西南地区 76 种元素地球化学图集[M].北京:地质出版社.1-201. [40]冯济舟.贵州省地球化学图集[M].北京:地质出版社.1-102.

[41]何绍麟,陈智.贵州地壳表层构造地球化学分区及其意义[J].贵州地质.2002,19(3):148-155. [42]廖宝丽.贵州二叠纪碱性玄武岩的岩石学和地球化学研究[D].中国地质大学(北京)博士 学位论文.2013:39-45.

[43]张云湘, 骆耀南, 杨崇喜, 等. 攀西裂谷[M]. 北京: 地质出版社, 1988.98.

[44] Ellison AJG, Navrotsky A. Enthalpy of formation of zircon[J]. J.Am. Ceramic Soc.1992,75: 1430- 1433.

[45] Goldfarb R J, Phillips G N, Nokleberg W J, Tectonic setting of synorogenic gold deposits of the Pacific Rim[J].Ore Geol Rev.1998, 13: 185- 218.

[46] Buick R, Thornett J R,M C Naughton N J, Smith J B, Barley ME, Savage M. Record of emergent continental crust similar to 3.5 billion years ago in the Pilbara craton of Australia [J].Nature, 1995, 375:574-575.

[47] Wilde S A, Valley J W, Peck W H, Graham CM. Evidencefrom detrital zircons for the existence of continental crust andoceans on the Earth 4.4 Gyr ago [J]. Nature, 2001, 409:175-178.

[48]Gehrels,G.E.Detrital Zircon U-Pb Geochronology Applied to Tectonics[J].Annual Review of Earth And Planetary Sciences,2014,42 (1):127–149.

[49]Shi,Y.,Yu,J.H.,Santosh,M.Tectonic Evolution of the Qinling Orogenic Belt,Central China: New Evidence from Geochemical,Zircon U-Pb Geochronology and Hf Isotopes[J].

Precambrian Research.2013,231(5):19-60.

[50] Nie,J.S.,Horton,B.K.,Saylor,J.E.,et al.Integrated Provenance Analysis of a Convergent Retroarc Foreland System:U-Pb Ages,Heavy Minerals,Nd Isotopes,and Sandstone Compositions of the Middle Magdalena Valley Basin,Northern Andes,Colombia.Earth Science Reviews[J]. 2012,110(1/2/3/4):111-126.

[51] Dickinson, W.R., Gehrels G., E. Sediment Delivery to the Cordilleran Foreland Basin: Insights from U-Pb Ages of Detrital Zircons in Upper Jurassic and Cretaceous Strata of the Colorado Plateau [J]. American Journal of Science, 2008, 308(10):1041-1082.

[52] Dickinson, W.R., Gehrels, G.E. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: a Test Against a Colorado Plateau Mesozoic Database[J]. Earth And Planetary Science Letters. 2009, 288(1):115-125.

[53] Thomas, W.A. Detrita-Zircon Geochronology and Sedimentary Provenance[J].

Lithosphere.2011,3(4):304-308.

[54]Lo C H, Chung S L, Lee T Y, et al.Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth Planet Sci Lett.2002, 198: 449-458.

[55]Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous

province (SW China) and the end-Guadalupian mass extinction[J]. Earth Planet Sci Lett.2002,196: 113-122.

[56] He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth Planet Sci Lett.2007,255: 306-323.

[57]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[M].In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.

[58] Chen J, Li G.J, Yang J.D.et.al. Nd and Sr Isotopic Characteristics of Chinese Deserts: Implications for the Provenances of Asian Dust[J]. Geochimica et Cosmochimica Acta, 2007(71): 3904-3914.

[59]肖龙,徐义刚,何斌.峨眉地幔柱-岩石圈的相互作用:来自低钛和高钛玄武岩的 Sr-Nd 和 O 同位素证据[J].高校地质学报.2003,9(2):210.

[60]张招崇,王福生.峨眉山玄武岩 Sr 、Nd 、Pb 同位素特征及其物源探讨[J].地球科学-中国 地质大学学报.2003,28(4):432-433.

[61]Stiles C A, Mora C I, Driese S G. Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology[J]. Geoderma, 2003, 116(3/4): 279 299.

[62]张永清, 凌文黎, 李方林. 峡东地区南华纪—寒武纪地层风化过程元素及同位素演化特征及其地球化学意义[J]. 地球科学, 2008, 33(3): 302-312.

[63]Deng J, Wang Q-F, Yang S-J, et al. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores[J]. Journal of Asian Earth Sciences, 2010, 37: 412-424.

[64]Wang Q-F, Deng J, Liu X-F. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China[J]. Journal of Asian Earth Sciences, 2010, 39: 701-712.

[65]焦扬.云南文山天生桥矿区晚二叠世铝土矿沉积古地理特征与成矿作用研究[D].中国地质 大学(北京)博士论文,2014.P120-121.

[66] 贵州省地质矿产局区域地质调查大队.贵州岩相古地理图集[M].贵阳:贵州科技出版 社,1992.

[67] Li, D., R. Li, Z. Zhu, X. Wu, J. Cheng, F. Liu, and B. Zhao, ,Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China))[J].Fuel, 2017c doi.org/10.1016/j.fuel.2017.07.008.
[68] Li D, Li R, Zhu Z, et al. Influence on lacustrine source rock by hydrothermal fluid: a case

study of the Chang 7 oil shale, southern Ordos Basin[J]. Acta Geochimica, 2017(2):1-13.

[69] Li D, Li R, Zhu Z, et al. Rare earth elements geochemistry characteristics and their geological implications of lacustrine oil shale from Chang 7 oil layer in southern Ordos Basin, China[J]. Geological Journal, 2017, 52(S1).

[70] Li D, Li R, Zhu Z, et al. Elemental characteristics of lacustrine oil shale and its controlling factors of palaeo-sedimentary environment on oil yield: a case from Chang 7 oil layer of Triassic Yanchang Formation in southern Ordos Basin[J]. Acta Geochimica, 2017:1-16.

[71]Mclennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284:21-40.

[72]Nesbitt H W, Young G M. Formation and Diagenesis of Weathering Profiles[J]. Journal of Geology, 1989, 97(2):129-147.

[73]席胜利,郑聪斌,李振宏.鄂尔多斯盆地西缘奥陶系地球化学特征及其沉积环境意义[J].古地 理学报,2004, 6(2): 196-2002.

[74]Tribovillard N, Algeo T J, Lyons T, et al.Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(2):12-32.

[75]Jones B,Manning D A C.Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 1994, (111):111-129.

[76]Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11):995.

[77]Algeo T,Ingall E. Sedimentary Corg: P ratios, paleocean ventilation,and Phanerozoic atmospheric p O(2)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 256(3):130-155. [78]李进.黔北下寒武统牛蹄塘组页岩古环境恢复与有机质富集研究[D].中国地质大学(北京)博士学位论文.130-141.

[79]Sverjensky D A. Europium redox equilibria in aqueous solution[J].Earth & Planetary Science Letters, 1984, 67(1):70-78.

[80]Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854):214-219.

[81] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly:a potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1-2):43-53.

[82] 于蕾.滇东南地区晚二叠世沉积型铝土矿矿床成因与成矿规律[D].中国地质大学(北京) 博士学位论文.1-10.

[83] 田茂军.云南省文山县天生桥铝土矿矿床地质特征及成因探讨[D].昆明理工大

学硕士学位论文.1-68.

[84] 焦扬,王训练,崔银亮,等.云南文山县天生桥铝土矿地球化学特征与物源分析[J].现代地质,2014,28(4):731-742.

[85] 焦扬,王训练,崔银亮,等.云南文山地区晚二叠世吴家坪阶岩相古地理特征及成矿作用[J]. 矿物学报,2013,33(4): 629-636.

[86] 范良军,李伟清,杨文金.云南文山县天生桥铝土矿沉积环境浅析[J].云南地质,2018,37(1): 72-77.

[87] 潘其云.广西平果铝土矿田发现史[J].广西地质,1994,7(2): 89-92.

[88] 龙永珍.桂西铝多金属矿矿床地质地球化学特征及综合利用研究[D].中南大学博士学位 论文.1-131.

[89] 陈粤,周辉,张家兴,等.桂西铝土矿中三稀金属矿产开发潜力探究[J].矿产与地质,2017,31(4):671-675.

# 报告附件

## 一、发表的主要论文

1、张海,孟昌忠,齐有强,等.黔西北地区云炉河坝铅锌矿集区成矿物质来源-S、 Pb 同位素制约.矿物学报.2016,36(2):271-276.

2、Zhang Xue-Ping,Xu Jing-Shu,Sang Shi-Hua,and Zhang Hai^{**}.Measurement of Mineral Solubilities in the Ternary Systems NaCl-PbCl₂-H₂O and MgCl₂-PbCl₂-H₂O at 373 K.Geochemistry International, 2018, 56(12): 1172–1178.

3、 Peinan He, Mingyou He,Hai Zhang.State of rare earth elements in the rare earth deposits of Northwest Guizhou, China.Acta Geochim,2018,37(6):867–874.

4、齐有强,胡瑞忠,张海,等.贵州西北部基性侵入岩锆石 U-Pb 年代学、岩石 地球化学特征及铅锌成矿意义.地质学报.2016,(5):933-949.

## 二、在站期间主持和参与的科研项目

主持项目:

1.贵州省科技计划项目,黔科合基础[2017]1092,贵州西部峨眉山玄武岩古 风壳型铌多金属矿成矿机制和成矿潜力研究,2017/10-2020/12,10万元,在研, 主持;

2.贵州省地矿局地质科研项目,黔地矿科合(2016)5号,六盘水钟山区马 戛村富硒土壤资源调查评价与利用研究,2016/12-2018/12,10万元,在研,主 持;

3.国家自然科学基金面上项目,41373062,四川盆地富锶地下卤水多温相 平衡与相图研究,2014/01-2017/12,65万元,已结题,参与;

4.贵州省地矿局地质科研项目,黔地矿科合(2015)5号,贵州西部地区宣 威组一段铌多金属矿成矿规律与找矿方向研究,2015/10-2017/12,7万元,已结 题,主持;

#### 参与项目:

1.国家重点研发专项, 2017YF 0602500, 稀散矿产资源基地深部探测技术示

范, 2017/07-2020/12, 1132万元, 在研, 参与(专题负责人)。

## 三、学习和工作经历

学习经历:

1、2004年-2008年,中国地质大学(武汉)地学院地球化学专业,获学士学位;

2、2008年-2011年,成都理工大学核自学院地球化学专业,获硕士学位;

3、2011年-2014年,成都理工大学核自学院地球化学专业,获博士学位。 **工作经历:** 

1、2011年至今,贵州省地矿局一一三地质大队工作;

2、2015年3月-2018年3月,中国科学院地球化学研究所矿床地球化学国家重点实验室从事博士后研究工作。

# 四、个人永久通讯地址

通讯地址:贵州省六盘水市钟山区南环中路 63 号附 5 号 703 室

邮编: 553001

邮箱: zhanghai01504130@163.com

电话: 13408057279