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Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded
carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study
explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in
bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in
Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China’s
bamboo forests were 62.83 kg CO2 ha21 y21 and 4.5 3 108 kg CO2 y21, respectively. This implies that 1.4 3
109 kg CO2 would be sequestered in world’s bamboo phytoliths because the global bamboo distribution area
is about three to four times higher than China’s bamboo. Therefore, both increasing the bamboo area and
selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2
within bamboo phytoliths.

P
hytoliths are the amorphous silica deposited in plant tissues such as the cell wall, cell lumen and intercellular
space during plant growth1–3. They are present in many plants, especially abundant in gramineous plants,
e.g., bamboo4–5. A large amount of phytoliths are released in the topsoil through plant organic matter

decomposition6–7. Importantly, phytoliths are very stable in some sediments8 or even in harsh environments
such as flood, earthquake and dust storms9–11, due to their strong resistance to degradation6,11,12. Recent researches
report that during the formation of phytoliths, 1%–6% organic carbon can be sequestered within the phytoliths,
also called phytolith-occluded carbon (PhytOC)6,13, which plays an important role in the global carbon cycle and
climate change as a ‘‘safe’’ carbon sink14,15.

Bamboo, a typical phytolith-accumulator5,16, is predominantly distributed in the world tropical and subtropical
regions, with a total area of 2.2 3 107 ha17, occupying about 1% of the total global forest distribution area18. In
China, bamboo is widely distributed with an total area of 7.2 3 106 ha, especially in Zhejiang, Fujian and Jiangxi
Provinces17. Recently, Parr et al.5 and Song et al.19 estimated the global production of phytolith and PhytOC in
bamboo. Furthermore, Song et al.19 compared the production of PhytOC in bamboo with other forests in China.
However, their studies were only based on a limited number of bamboo species (,11). The phylogenetic variation
of phytolith in bamboo leaves has not been investigated. Therefore, this study selected 75 different bamboo
species to explore the phylogenetic variation in phytolith composition and phytolith production of bamboo.

Results
The phytolith content in leaves of the 75 bamboo species ranged significantly from 4.28% to 16.42%, mostly
within 8%–14% and with a mean of 9.59% (Table 1, Fig. 1). The highest phytolith content was in leaves of
Pleioblastus kongosanensis, Phyllostachys sulphurea viridisulcata, Phyllostachys ventricosa cv huangganlucao
and Phyllostachys ventricosa cv. luganhuangcao, with a mean of higher than 14%. The phytolith content in
the leaves of Chimonobambusa quadrangularis, Phyllostachys prominensa and Phyllostachys aureosulcata f.
aureocaulis was the lowest, with a mean of 4.28%, 4.52% and 4.84%, respectively. There was a significant
variation in the phytolith content of bamboo leaves from different genera (Fig. 2A). The phytolith content
was the highest in Sasa, while the lowest in Chimonobambusa, Indocalamus and Acidosasa (Table 1; Fig. 2A).
There was no obvious variation in leaf phytolith content for bamboos belonging to different subtribes,
bambuseaes and bambusataes (Fig. 2B–D). The C content of phytolith for bamboo varies slightly from
2.0% to 3.2%, with a median of 2.6% (Fig. 3).
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Discussion
Recent studies indicate that the silicon (Si) content is higher in non-
vascular plants and horsetails than in ferns, gymnosperms and
angiosperms; higher in monocotyledons than in dicotyledons; and
higher in gramineous plants and the Palmales than in other orders of
plants20,21. Furthermore, the phylogenetic variation in Si content in
different phyla is greater than that of the lower level classifications
such as order and family20,21. Some researches show that there is a
strong positive correlation between the phytolith and SiO2 contents
of biomass5,15,19. The above findings may have broad implications for
phylogenetic variation in phytolith content of plants.

The dramatic variations of phytolith content within leaves of dif-
ferent bamboo species and genera may be due to different absorption
capacities of Si5,22,23. Although the Si can be taken up by plant roots in
the form of Si(OH)4, through the transpiration stream24–26, the ability
of transpiration for Si may vary in bamboos of different genera or
species27. So, the deposition of Si among different bamboo also differs
significantly. The different origins of bamboo species may also influ-
ence the Si deposition within leaves13,28,29. For example, the different
soil Si supply capacity from their original sites also leads to the
different absorption capacity of Si in plants13,28,29. In addition, the
hereditary variability of bamboo species could also affect the Si
absorption capacity30. Although the mechanisms of Si absorption
for some plants such as rice28,29,31, wheat32 and soybean33 have been
reported by many researchers, that mechanisms of Si absorption in
bamboo and the influence of different levels of phylogenetic clas-
sification on bamboo phytolith accumulation remain to be revealed.

Recent researches have shown that PhytOC is much more stable
than other organic carbon fractions in soils or some sediments, and
can occupy up to 82% of the total carbon accumulation in a 2000 year
old soil profile8,13 suggesting that PhytOC accumulation has a crucial
role in long-term terrestrial carbon sink and global climate
change2,3,5,15,34.

We have examined the relationship of PhytOC content of bamboo
leaf and phytolith content (Fig. 4A) and carbon content of phytolith
and phytolith content (Fig. 4B). In contrast with Parr et al.5, the
results show that there is no significantly negative relationship (p
. 0.05) between phytolith content and carbon content of phytoliths
but significantly positive relationship between the phytolith content
and the PhytOC content in bamboo leaves. The results imply that
increasing phytolith content is a potential measure to increase phy-
tolith C accumulation.

Taking the C content in phytoliths of 3 6 1% (Fig. 3; ref. 5 and 19)
and net primary production for bamboo leaf litters of 5955 6

1000 kg ha21 yr21 19,35, we estimate that the phytolith carbon sequest-
ration flux of bamboo is 28.04–107.55 kg CO2 ha21 yr21, with an
average of 62.83 kg CO2 ha21 yr21. Taking China’s current bamboo
area of 7.2 3 106 ha and the mean bamboo PhytOC production flux
of 62.83 kg CO2 ha21 yr21, we estimate that about 4.52 3 108 kg CO2

Figure 1 | Frequency distribution of phytolith content within 75 bamboo
species.

Figure 2 | Phytolith content in leaves for bamboo of: (A) different genera,
(B) different subtribes, (C) different bambuseaes, (D) different
bambusataes. Different letters above the error bars indicate significant

difference among the different bamboo at p , 0.05 levels.
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yr21 would be sequestered in phytoliths of Chinese bamboo forests.
As shown in Table 1, it is possible to improve the production flux of
PhytOC by selecting bamboo species (e.g., Pleioblastus kongosanen-
sis, Phyllostachys sulphurea viridisulcata) with high phytolith con-
tent5,15. If those bamboo species could be widely planted in China, 7.2
3 108 kg CO2 from the atmosphere would be captured within bam-
boo phytoliths.

The global bamboo distribution area is 2.2 3 107 ha, occupying
about 1% of the global forests17,18, and is mainly distributed in trop-
ical and subtropical regions such as China, India, Thailand and
Japan17,18,36. Taking the mean PhytOC production flux of 62.83 kg
CO2 ha21 y21, we estimate that approximately 1.4 3 109 kg CO2

would be sequestered in bamboo phytoliths globally each year.
However, if the highest PhytOC production flux of 107.55 kg CO2

ha21 y21 can be reached, atmospheric sequestration of 2.4 3 109 kg
CO2 each year through global bamboo phytolith is possible.
Assuming an increase rate of bamboo area of 3% annually37,38 and
the mean PhytOC production flux in bamboo of 62.83 kg CO2 ha21

y21, then at least 2.8 3 109 kg CO2 from the atmosphere would be
sequestered in bamboo phytoliths globally by 2050. Taking the high-
est PhytOC production flux, 4.7 3 109 kg CO2 would be sequestered
in bamboo phytoliths globally.

Although the total forest area of the world has decreased signifi-
cantly, the total area of bamboo forests has increased at a rate of 3%
annually and will continue to increase in the next decades19. For
example, it was estimated that an area of 27 3 107 ha may be avail-
able for afforestation in China and at least half of the land can be used
for bamboo afforestation18,19. Furthermore, the world’s bamboo may
increase from 25 3 106 to 100 3 106 ha (approximately 3% of world’s
forests) by taking measures of bamboo afforestation/reforestation in
the tropical and subtropical area of the world18,19. Therefore, it is
possible to significantly increase phytolith carbon sink in bamboo
forests by both increasing the bamboo area and selecting high phy-
tolith-content bamboo species such as Pleioblastus kongosanensis,
Ph. Ventricosa cv. Luganhuangcao and Phyllostachys Ventricosa cv
Huangganlucao.

Figure 4 | The relationship between the phytolith content and the carbon
content of phytoliths (p . 0.05) (A), and between the phytolith content
and the PhytOC content in bamboo leaves (B).

Figure 3 | The variation of the occluded C content of phytoliths in bamboo leaves. Different letters above the error bars indicate significant difference

among bamboo bambuseaes at p , 0.05 levels.
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Table 1 | Phylogenetic variation of phytolith content in bamboo leaves

Bambusatae Bambuseae Subtribe Genus Species Phytolith (%)a

Bambusatae Bambuseae Trin. Bambuseae Trin. Bambusa B.rutila 10.41
B. multiplex 11.92
B. multiplex cv. Changye 10.02
B.multiplex raeuschel 8.17
B.alphonsekarri 10.12
B.glaucescens 7.43

Shibataeeae Shibataeinae Hibanobambusa H.tranguillans.shiroshima 9.01
Shibataea Sh.kumasasa 9.74

Sh. chinensis nakai 7.89
Sh. chinensis nakai cv. jimao 7.52

Semiarundinaria S. yashadake f. kimmei 8.99
S. yashadake makino 8.64
S. yashadake f. ogon 10.83

Phyllostachys Ph.prominens 4.52
Ph.vivax. huanwenzhu 6.59
Ph.heterocycla taokiang 7.50
Ph.heterocycla 6.82
Ph.incarnata 7.82
Ph. bambusoides 9.84
Ph. bambusoides. cv. huayehuagan 11.24
Ph.bambusoides.castillonis 8.96
Ph. nigra 9.43
Ph. nigra. cv. huaye 9.87
Ph.aureosulcata.pekinensis 7.18
Ph.aureosulcata 7.68
Ph.aureosulcata.aureocaulis 4.84
Ph.aureosulcata.spectabilis 8.30
Ph.sulphurea.viridis 13.99
Ph.sulphurea viridisulcata 15.63
Ph. sulphurea 12.07
Ph. houzeauana 8.99
Ph. ventricosa 9.87
Ph. ventricosa cv huangganlucao 16.42
Ph. ventricosa cv. luganhuangcao 14.83
Ph. ventricosa cv. huangjin 9.08
Ph.arcana.luteosulcata 9.19
Ph.propinqua 9.40
Ph.vivax.aureocaulis 7.56
Ph.heterocycla.gracilis 8.09
Ph.nigra.henonis 8.59
Ph.dulcis 10.02
Ph.parvifolia 7.78
Ph. violascens cv. xiye 9.48
Ph. violascens cv. jianye 9.81
Ph. violascens cv. viridisulcata 12.41
Ph. violascens cv. flavistriatus 10.50
Ph. violascens cv. panggan 10.32
Ph. violascens cv. anhuiensis 7.81
Ph. violascens cv. flavivaginis 7.52
Ph. violascens cv. violascens 7.32
Ph.bambussoides 8.50
Ph.aureosulcata 6.52
Ph. violascens cv. linanesis 10.38

Sinobambusinae Indosasa I.acutiligulata 8.05
I.sinica 13.92

Sinobambusa S. tootsik 11.15
S. tootsik.cv. huaye 8.45

Chimonobambusa Ch.quadrangularis 4.28
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Methods
Experimental site. Fresh mature (two-year old) leaf samples were collected from 75
different bamboo species belonging to two bambusataes, three bambuseaes, five
subtribes and 15 genera in the botanical garden at Zhejiang Agricultural and Forestry
University (30u159N, 119u439E), Lin’an, Zhejiang, China. Lin’an is located in western
Zhejiang and has a subtropical monsoon climate with an average elevation of 150 m
above sea level. The distribution of precipitation is uneven, with an average of
1400 mm y21. The annual frost-free period is up to 234 d, and the annual average
temperature is 16uC.

Experimental design and Analyses of the phytolith in samples. The leaves of the
different bamboo species were used to examine the variability of phytolith
production. Mature leaf samples were collected in May 2012, when they have higher
phytolith content than that in younger leaves5,39. Each leaf sample was mixed, rinsed
with ultrapure water, oven-dried at 75uC for 48 h to a constant mass and then cut into
small pieces (,5 mm) for phytolith analysis. The phytoliths within bamboo leaves
were extracted with a microwave digestion process40 and Walkley–Black type digest41.
The extracted phytoliths were oven-dried at 75uC to a constant weight. Dried
phytoliths were weighed and recorded for phytolith content calculation. Occluded C
content of phytoliths was determined with methods of ref. 15.

Data calculations and statistics. The data presented in this paper were the average of
three replicates. Excel and SPSS were employed in the statistical analysis of data. One-
way ANOVA and Duncan’s Multiple Range Test (p , 0.05) were applied to examine
the difference of data groups.
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