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a b s t r a c t

The relationships between chlorophyll-a, phytoplankton abundance and 20 chemical, physical and
biological water quality variables were studied by using principal component scores (PCs) in stepwise
linear regression analysis (SLR) to simulate chlorophyll-a and phytoplankton abundance at a karst deep
reservoir, southwest of China. Score values obtained by PC scores were used as independent variables in
multiple linear regression models. The following models were used to simulate chlorophyll-a and abun-
dance of Cyanobacteria, Chlorophyta, Bacillariophyta, and Pyrrophyta respectively: chlorophyll-
a1 = 10.501 + 1.390 (score 1) (P < 0.01), chlorophyll-a 2 = 10.501 + 1.102 (score 1)�0.877 (score 2)
(P < 0.05), log10 (Cyanobacteria) = 1.277�0.726 (score 2) (P < 0.05), log10 (Chlorophyta) = 3.927�0.150
(score 2) (P < 0.01), log10 (Bacillariophyta) = 4.872�0.131 (score 4) (P < 0.01) and log10 (Pyr-
rophyta) = 2.463 + 0.578 (score 1) (P < 0.05). The models could be used to simulate chlorophyll-a and
phytoplankton abundance levels successfully, and revealed that DO, WD, Tem, TD, pH, NH4–N and TSS
were the most important factors regulating the composition of chlorophyll-a and Pyrrophyta abundance.
ORP, Cl�, SO2�

4 , TN were the main factors affecting Chlorophyta and Cyanobacteria abundance. F� and Ca2+

were the main factors influencing the Bacillariophyta abundance.
Ecological Society of China. Published by Elsevier B.V.
1. Introduction

Principal components analysis (PCA), which is widely used in
the aquatic environmental and ecological modeling, offers an
objective method for handling large sets of biotic and abiotic data
by reducing the complexity of multidimensional systems through
the maximization of component loading variance and elimination
of invalid components [17,2,11]. Another advantage of PCA is it
further enables one to extract interpretable information on physi-
cal–chemical features of a system [8,3,4] by explaining the
variance–covariance structure of the original variables. Recently,
PCA has been employed either alone or in combination with other
methods to model biological and ecological processes
[15,18,20,19]. A model can be useful to eliminate multi-colinearity,
to remove indirect effect of variables and to reduce the number of
variables in multiple regression models, it also can simulate
aspects of biology [1,5]. To date, models for predicting chloro-
phyll-a had been studied infrequently using different ways
China. Published by Elsevier B.V.
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[10,14,7,6]. The study stations were in a deep karst reservoir. The
experiments enabled us to identify the significant factors influenc-
ing water quality in the reservoir, and to explore the relationships
between the major environmental factors and chlorophyll-a with
phytoplankton abundance. The aim of this study is to combine
principal component analysis and stepwise linear regression mod-
els to identify the main factors affecting changes in chlorophyll-a
and phytoplankton and simulate chlorophyll-a and phytoplankton
abundance in the karst reservoir.

2. Material and methods

2.1. Study sites

Hongfeng Reservoir(HR) is a deep karst reservoir, located in the
southwest of China (105�58006.3400E–106�38004.0300E, 26�09000.
4200N–26�41037.8700N) with a drainage area of 1596 km2, a volume
of 6.01 � 108 m3, an average water depth of 10.52 m and
maximum depth 45 m. It was built on the river in 1960 year in or-
der to generate hydroelectricity and irrigation, but recently, the
reservoir is to supply drinking water for Guiyang city. The
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Fig. 1. The sampling stations at the Hongfeng Reservoir.

Table 2
Results of principal component analysis.

Loading of variables

PCA1 PCA2 PCA3 PCA4 PCA5

EC �0.887 �0.053 0.251 0.141 �0.016
DO 0.807 �0.188 0.529 �0.026 �0.012
WD �0.801 0.289 �0.291 0.213 0.022
pH 0.766 �0.265 0.528 �0.078 0.059
TD 0.736 0.230 0.039 0.385 0.312
Tem 0.717 0.618 0.054 �0.146 0.035
NH4–N �0.689 0.060 �0.232 0.063 0.551
TSS 0.635 0.337 0.375 0.059 �0.003
ORP �0.363 �0.877 0.071 0.077 �0.055
Cl- �0.145 0.751 0.243 0.426 0.030

SO2�
4

�0.245 0.702 0.303 0.486 �0.029

TN �0.470 0.579 �0.026 �0.537 �0.042
Na+ 0.202 �0.351 �0.026 �0.330 0.262
TP 0.233 0.526 �0.738 �0.079 �0.082
NO3–N �0.657 0.249 0.663 �0.182 �0.083
K+ 0.576 �0.198 �0.655 0.289 �0.165
Mg2+ �0.388 �0.467 0.564 0.288 �0.045
F� 0.107 0.168 0.103 0.669 �0.286
Ca2+ �0.022 �0.569 �0.337 0.599 0.060
TOC 0.085 0.046 0.084 0.133 0.872

Note: Bold numbers represent the highest correlation coefficient of PCA.
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reservoir is filled by four rivers including Yangchang River, Maxian
River, Houlu River and Taoyuan River. Most precipitation occurs
during the summer monsoon season (from early May to late Sep-
tember). The water level in the reservoir fluctuates seasonally,
with the lowest water level occurring in early summer and the
highest in early winter. The reservoir is mesotrophic and even
water bloom appeared in summer two years ago. HR is one of
the main drinking water sources of Guiyang city, and also plays a
role as power generation, flood control, irrigation, aquaculture,
tourism and the regulation of natural ecological comprehensive
function. Four sampling sites were selected (Fig. 1).
Table l
Descriptive statistics of selected PCs total variance explained.

Component Initial eigenvalues

% of Variance Cumulati

PCA1 6.062 30.311 30.311
PCA2 3.977 19.885 50.196
PCA3 2.926 14.630 64.827
PCA4 2.100 10.500 75.326
PCA 5 1.371 6.854 82.180
PCA 6 0.929 4.647 86.827
PCA 7 0.797 3.987 90.814
PCA 8 0.515 2.574 93.388
PCA 9 0.394 1.969 95.357
PCA 10 0.245 1.227 96.584
PCA 11 0.163 0.815 97.398
PCA 12 0.134 0.668 98.066
PCA 13 0.117 0.586 98.652
PCA 14 0.089 0.443 99.094
PCA 15 0.072 0.359 99.453
PCA 16 0.051 0.253 99.706
PCA 17 0.035 0.176 99.882
PCA 18 0.015 0.073 99.955
PCA 19 0.006 0.031 99.986
PCA 20 0.003 0.014 100.000

Extraction method: principal component analysis.
2.2. Dates and analytical methods

Water samples were taken in January (winter) in 2010 at four
stations (Fig. 1). Temperature (T), pH, dissolved oxygen (DO),
electricity conductivity (EC) were measured in situ at all locatlities
by YSI-6600V2. In the laboratory, the water samples were further
analyzed for total phosphorus (TP) and total nitrogen (TN) using
potassium persulfate digestion. Water samples were filtered
through a 47 mm/45 lm Whatman GF/C filter for ammonium
(NH4–N), nitrates (NO3–N) were determined colorimetrically, other
environmental factors were further analyzed by Chinese Standard
Methods of Water Quality Analysis (GB3838-2002). 400–1000 mL
water was obtained for chlorophyll-a by filtering on a Whatman
GF/A filter, and its concentration was determined within 8 h after
Extraction sums of squared loadings

ve% Total % of Variance Cumulative%

6.062 30.311 30.311
3.977 19.885 50.196
2.926 14.630 64.827
2.100 10.500 75.326
1.371 6.854 82.180



Table 3
Results of regression analysis for chlorophyll-a (n = 36).

Included Independent variables Regression coefficients Standardized coefficients t P

B Std. error Beta

A Constant 10.501 0.336 31.231 0.000⁄⁄

REGR factor score 1 for analysis 1 1.390 0.341 0.573 4.076 0.000⁄⁄

B Constant 10.501 0.310 33.845 0.000⁄⁄

REGR factor score 1 for analysis 1 1.102 0.333 0.454 3.307 0.002⁄⁄

REGR factor score 2 for analysis 1 �.0877 0.333 �0.362 �2.633 0.013⁄

Dependent variables: chlorophyll-a.

Fig. 2. Measured and simulated chlorophyll-a concentrations in the Hongfeng Reservoir(HF: Hongfeng). Note: 1–11 for HFS1-0.5 m, HFS1-2 m, HFS1-4 m, HFS1-6 m, HFS1-
8 m, HFS1-10 m, HFS1-12 m, HFS1-14 m, HFS1-16 m, HFS1-18 m, and HFS1-20 m; 12-20 for HFS2-0.5 m, HFS2-2 m, HFS2-4 m, HFS2-6 m, HFS2-8 m, HFS2-10 m, HFS2-12 m,
HFS2-14 m, and HFS2-16 m; 21-27 for HFS3-0.5 m, HFS3-2 m, HFS3-4 m, HFS3-6 m, HFS3-8 m, HFS3-10 m, and HFS3-12 m; 28-36 for HFS4-0.5 m, HFS4-4 m, HFS4-8 m,
HFS4-12 m, HFS4-16 m, HFS4-20 m, HFS4-24 m, HFS4-28 m, and HFS4-32 m.

Table 4
Results of regression analysis for Cyanobacteria (n = 36).

Included independent variables Regression coefficients Standardized coefficients t P

B Std. error Beta

C Constant 1.277 0.278 4.599 0.000⁄⁄

REGR factor score 2 for analysis 1 �0726 0.282 �0.404 �2.578 0.014⁄

Dependent variables: Cyanobacteria.
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its extraction in 90% acetone. Phytoplankton was fixed with forma-
lin 3–5% in the field and identified and enumerated (random fields)
under the microscope using the settling technique in the labora-
tory. In addition, the cells colonies and filaments were enumerated
to at least 300 specimens of the combined species [9].
2.3. Statistical methods

A Kolmogorov–Smirnov normality test was applied to all 20
water quality variables, chlorophyll-a and phytoplankton abun-
dance of identified species. The abundance data for each species
were normalized using a log10(X + 1) function prior to their use
in PCA. Communalities (CO) of variables in the selected PC were
found to be greater than 0.70.
2.4. Multiple linear regression analysis

Multiple linear regression analysis with stepwise method was
conducted with chlorophyll-a and phytoplankton abundance as
dependent variables, respectively, and the PC scores as the inde-
pendent variable. The model can be generalized as the following:

Ychlorophyll-a ðphytplankton abundanceÞ ¼ aþ
X

bkSk þ e

where a is a constant term; bk is the regression coefficient of score
values of kth PC; Sk is the score values of kth PC; and e is the error
term of the mode; k = 1–20. A t-test was used to test the regression
coefficients to determine the significance of the coefficient
(P < 0.01). Weight of variables and values of standardized variables
were multiplied to obtain the score values of PCs. Different combi-



Fig. 3. Measured and simulated Cyanobacteria abundance in the Hongfeng Reservoir. Note: The numbers are the same to those in Fig. 2.

Table 5
Results of regression analysis for Chlorophyta (n = 36).

Included independent variables Regression coefficients Standardized coefficients t P

B Std. error Beta

D Constant 3.927 0.067 58.455 0.000⁄⁄

REGR factor score 2 for analysis 1 �0.150 0.068 �0.354 �2.204 0.034⁄

Dependent variables: Chlorophyta.

Fig. 4. Measured and simulated abundance of Chlorophyta abundance in the Hongfeng Reservoir. Note: The numbers are the same to those in Fig. 2.
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nations of the principal component scores (PCs) were used as
independent variables ([Xi], i = 1,2, . . .20) in the stepwise linear
regression analysis. These score values were used as independent
variables in the stepwise multiple linear regression analysis to
determine the most significant PCs for chlorophyll-a and phyto-
plankton abundance. All the analysis was done using SPSS (18.0).



Table 6
Results of regression analysis for Bacillariophyta (n = 36).

Included independent variables Regression coefficients Standardized coefficients t P

B Std.error Beta

E Constant 4.872 0.043 114.079 0.000⁄⁄

REGR factor score 4 for analysis 1 �0.131 0.043 �0.461 �3.030 0.005⁄⁄

Dependent variables: Bacillariophyta.

Fig. 5. Measured and simulated abundance of Bacillariophyta abundance in the Hongfeng Reservoir. Note: The numbers are the same to those in Fig. 2.

Table 7
Results of regression analysis for Pyrrophyta (n = 36).

Included independent variables Regression coefficients Standardized coefficients t P

B Std. error Beta

F Constant 2.463 0.231 10.647 0.000**

REGR factor score 1 for analysis 1 0.578 0.235 0.389 2.464 0.019*

Dependent variables: Pyrrophyta.
* P < 0.05.
** P < 0.01.
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3. Results and discussion

3.1. Principal component analysis

The principal component analysis selected five components
which explained 82.18% of the total variance (Table 1). As sug-
gested by their loadings (Table 2), EC, DO, water depth (WD), pH,
turbidity (TD), temperature (Tem), NH4–N and TSS showed the
highest loadings with PC1, while ORP, Cl�, SO2�

4 , TN and Na+ were
grouped in PC2. TP, NO3–N, K+ and Mg2+ in PC3, F�and Ca2+ were in
PC4. In PC5, the only meaningful load was TOC.
3.2. Simulation of chlorophyll-a

In model-A, which the PCs was used as the independent
variables, only PCs1 was selected as the variable to explain the
variance in chlorophyll-a (P < 0.01, R = 0.573). It appears that with
only PCs1, we can simulate chlorophyll-a reasonably well using the
following model-A:
chlorophyll-a ¼ 10:501þ 1:390 ðscore 1Þ

Based on the signs of the correlation coefficient of PCs1 in the
above model-A and the PCA results where PCs1 was mainly associ-
ated with 8 variables, we could further infer that increase in DO,
pH, TD, Tem and TSS would lead to increase in chlorophyll-a level,
while increase in EC, WD and NH4–N would lead to decrease in
chlorophyll-a level.

With model-B, chlorophyll-a was mostly explained by PC score
1, PC scores 2 (P = 0.013). Unlike in model-A, PC scores 2 was also
important to simulate chlorophyll-a in model-B. The final model-B
can be defined as following (Table 3, Fig. 2)

chlorophyll-a2 ¼ 10:501þ 1:102 ðscore 1Þ � 0:877 ðscore 2Þ

There are many methods to simulate chlorophyll-a.
Pérez-Ruzafa forecasted the chlorophyll-a and the relationship
between the environmental factors by using the way of differential
equation and correlation [16]. French also successfully simulated
the chlorophyll-a contents by TP and Tem, there was a strong cor-
relation [7]. In our models, the chlorophyll-a concentrations had
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been relatively successful forecasted and found out the main envi-
ronmental factor to influence on chlorophyll-a. In the Hongfeng
Reservoir, EC, DO, WD, Tem, pH value, TD, NH4–N and TSS were
the main environment factors to influence chlorophyll-a. EC, WD
and NH4–N were the obvious negative correlation. On one hand,
it revealed that chlorophyll-a would reduce with the increase of
the depth at karst deep reservoir; On the other hand, nutrients
were not the main factors of influence changes of chlorophyll-a, re-
flected the water eutrophication bodies, hydrological conditions
and other environment factors affected phytoplankton change.

3.3. Simulation of phytoplankton abundance

Using similar method for chlorophyll-a, we also modeled the
phytoplankton abundance which may give us additional informa-
tion on the relationships between eutrophication and water
blooms.

3.3.1. Simulation of Cyanobacteria abundance
Weight of variables and values of standardized variables were

multiplied to obtain the score values of PCs, the result of model-
C (Table 4) suggests that PC scores 2 was significant simulation
of Cyanobacteria abundance. Fig. 3 showed the measured and
simulated values of Cyanobacteria abundance. Simulated Cyano-
bacteria abundance was calculated from:

log10 ðCyanobacteriaÞ ¼ 1:277� 0:726 ðscore 2Þ

The model-C suggested that increase in score 2 variables, such
as Cl�, SO2�

4 and TN would contribute to decrease in Cyanobacteria
abundance. However, the boosted ORP and Na+ brought forth an
improved response (a similar varied trend) for Cyanobacteria
abundance.

3.3.2. Simulation of Chlorophyta abundance
Weight of variables and values of standardized variables were

multiplied to obtain the score values of PCs. but the result of model
-D (Table 5) suggests that PC scores 2 was significant predictor for
Chlorophyta abundance. Fig. 4 showed the measured and simu-
lated values of Chlorophyta abundance. Simulated Chlorophyta
abundance was obtained from:
Fig. 6. Measured and simulated abundance of Pyrrophyta abundance in the
log10 ðChlorophytaÞ ¼ 3:927� 0:150 ðscore 2Þ

The model revealed that increase in score 2 variables, such as
Cl�, SO2�

4 and TN would lead to decrease in Chlorophyta abun-
dance. However, increase in ORP and Na+ would lead to increase
in Chlorophyta abundance. Fig. 4 showed that our model could pre-
dict Chlorophyta abundance only by score 2 (R = 0.345, P < 0.05);
many factors affected Chlorophyta, and Cl�, SO2�

4 , ORP, Na+ and
TN were the main ones.

3.3.3. Simulation of Bacillariophyta abundance
Only score 4 had a significant linear relationship with Bacilla-

riophyta abundance. As seen from Table 6, simulated (model-E)
values of Bacillariophyta abundance and observed (empirical) val-
ues were given in Fig. 5. Predicted Bacillariophyta abundance was
gained from:

log10 ðBacillariophytaÞ ¼ 4:872� 0:131 ðscore 4Þ

score 4 had a negative impact on Bacillariophyta abundance. Bacil-
lariophyta would be expected to decrease as the values of score 4
increased. Consequently, a total increase in significant variables of
score 4, which was, F� and Ca2+ would lead to a decrease in Bacilla-
riophyta abundance. We concluded that the model could predict
Bacillariophyta abundance only by score 4 (R = 0.461, P < 0.01). This
meant that many factors affected Bacillariophyta, and F� and Ca2+

were the main ones.

3.3.4. Simulation of Pyrrophyta abundance
Only score 1 had a significant linear relationship with

Pyrrophyta abundance. As seen from Table 7, simulated (model-
F) values of Pyrrophyta abundance and observed (empirical) values
were displayed in Fig. 6. Simulated Pyrrophyta abundance was
obtained from:

log10 ðPyrrophytaÞ ¼ 2:463þ 0:578 ðscore 1Þ

score 1 had a positive impact on Pyrrophyta abundance. Pyrrophyta
would be expected to increase as the values of score 1 increased.
Consequently, a total increase in significant variables of score1,
namely, we can further infer that increase in DO, pH, TD, Tem and
TSS would lead to increase in chlorophyll-a level, while increase
in EC, WD and NH4–N would lead to a decrease in Pyrrophyta
Hongfeng Reservoir. Note: The numbers are the same to those in Fig. 2.
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abundance. We arrived at the result that the model could predict
Pyrrophyta abundance only by score1 (R = 0.389, P < 0.05), though
many factors affected Pyrrophyta.

At present, the methods to forecast phytoplankton abundance
were relatively less. CCA analysis revealed the relationships be-
tween the phytoplankton community and environmental factors
[13]. This way could reflect the phytoplankton distribution pattern
based on phytoplankton abundance, but could not simulate phyto-
plankton abundance. From the models, relatively successful
forecast phytoplankton abundance dynamic changes in the Hongf-
eng Reservoir, especially in the diatom abundance, showed a
strong correlation. On one hand, the phytoplankton qualitative
and quantitative study in the Hongfeng Reservoir, diatom was
the common type and relatively stable, so it was easy to simulate;
on the other hand was Cyanobacteria and other algae changed
quickly, increased the difficulty to simulate phytoplankton abun-
dance, but these models still showed a good results [12].

4. Conclusion

It occurs for complex interactions between environmental fac-
tors which affect chlorophyll-a and phytoplankton abundance in
reservoirs and lakes. In the Hongfeng Reservoir, the phytoplankton
community was dominated by Cyanobacteria, Chlorophyta and
Bacillariophyta in different seasons. This principal component
analysis identifies DO, WD, Tem, TD, pH, NH4–N and TSS as the crit-
ical factors regulated dynamics of chlorophyll-a. DO, WD, Tem, TD,
pH, NH4–N and TSS were the most important factors regulated the
composition of Pyrrophyta abundance. ORP, Cl�, SO2�

4 , TN were the
main factors affected Chlorophyta and Cyanobacteria abundance.
Finally, F� and Ca2+ were the main factors affecting the
Bacillariophyta abundance. In the models, we can simulate chloro-
phyll-a and phytoplankton abundance successfully. It is of critical
importance for water resources management at the Hongfeng
Reservoir.
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