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The Shuikoushan ore district, located in southern Hunan Province, South China, contains Pb–Zn–Au mineraliza-
tion hosted in the Devonian to Triassic strata and Mesozoic granodiorite intrusions. Ore minerals are mainly
pyrite, sphalerite, galena and minor molybdenite. Molybdenite, usually intergrown with pyrite, formed during
Pb–Zn hydrothermal mineralization. In order to determine the precise age of Pb–Zn mineralization and further
understand the relationship between magma emplacement and hydrothermal mineralization in the ore district,
molybdenite Re–Os dating and zircon SIMS U–Pb dating were undertaken. The zircon U–Pb dating reveals that
the granodiorite intrusion was emplaced at 158.8 ± 1.8 Ma (MSWD = 0.40). Re–Os isotopic age of seven
molybdenite samples yields model ages ranging from 157.5 ± 2.5 Ma to 161.0 ± 2.4 Ma, and gives a well-
defined 187Re–187Os isochron age of 157.8± 1.4 Ma (2σ, MSWD= 1.3), indicating the timing of Pb–Zn mineral-
ization in the Shuikoushan ore district at about 158Ma. This date coincideswell with the zircon SIMS U–Pb age of
the granodiorite, revealing a genetic association between the Pb–Znmineralization and the granitic magmatism.
Combined with geochronological data published for other Pb–Zn–(Cu) deposits in southern Hunan, it can be
concluded that the granodiorite-related Pb–Zn mineralization throughout southern Hunan mainly occurred at
160–156 Ma, rather than 180–170 Ma or 170–160 Ma as considered previously. The Pb–Zn mineralization and
major W–Sn mineralization in southern Hunan are coeval and may be related to the same geological event.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Mesozoic granitoids are widespread in the Nanling Range, South
China, and are temporally and spatially closely related to Pb, Zn, W
and Sn mineralization. Generally speaking, Pb–Zn deposits are usually
related to small granodiorite intrusions, whereas those W–Sn deposits
are associated with granite plutons (Hua et al., 2003; Mao et al., 2008;
Xu et al., 1982, 1983). Historically, the W–Sn mineralization and the
Pb–Zn mineralization related to granitic intrusions in the area were
considered to have formed during two different metallogenic systems
(Hua et al., 2003; Mao et al., 2008; Xu et al., 1982, 1983).

Extensive research has been performed on W–Sn deposits and
related granite plutons in the Nanling Range (e.g. Hsu, 1943; Liu,
1980; Lu, 1986; Mao et al., 1998; Mo et al., 1958; RGNTD, 1985; Wang
et al., 1987; Xu and Ding, 1938; Zhu et al., 1981). Recent studies have
constrained the timing of W–Sn mineralization in the region through
precise geochronological analyses (e.g. Cai et al., 2006; Feng et al.,
2011; Fu et al., 2007; Guo et al., 2011; Hu et al., 2012; Liu et al., 2008a,
2012; Mao et al., 2007; Peng et al., 2006, 2007; Qi et al., 2012; Wang
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et al., 2004; Yuan et al., 2008, 2011). Three main episodes of Mesozoic
granite-related W–Sn mineralization have been defined (Mao et al.,
2007, 2013), including Late Triassic (230–210 Ma), Mid–Late Jurassic
(160–150 Ma) and Early–Mid-Cretaceous (120–80 Ma). The 160–
150Ma eventwas themost importantW–Snmineralization throughout
the Nanling Range (Mao et al., 2007, 2013; Peng et al., 2006, 2008), and
has been determined to be coeval with granitoid magmatism (Peng
et al., 2008). In contrast, the Pb–Znmineralization and related grano-
diorite intrusions in the Nanling Range have received less attention;
precise ages for Pb–Zn mineralization are relatively scarce (Lu et al.,
2006; Yuan, 2013). Existing inferred ages are considered to be
180–170 Ma (Hua et al., 2005) or 170–160 Ma (Mao et al., 2008,
2013).

The Shuikoushan ore district hosts Pb–Zn mineralization related to
the granodiorite intrusions of the Nanling Range. The district contains
total metal reserves of 874,600 t Pb and 1,110,800 t Zn, with an average
grade of 2.50–3.92% Pb and 2.57–4.40% Zn, respectively (Zhu, 1999). As
an important Pb- and Zn-producer in China for the past century, the
geological characteristics, ore genesis and geochemical characteristics
of the Shuikoushan ore district and related intrusions have attracted
much attention (e.g. Li and Peng, 1996; Liu, 1994; Liu and Tan, 1996;
Lu et al., 2013; Ma et al., 2006; Tan and Wan, 2008; Yu and Liu, 1997;
Zeng et al., 2000; Zhang, 1957). However, due to lack of reliable ages,
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it is still unclear when Pb–Zn mineralization took place, and the em-
placement timing of the ore-related intrusion is still controversial
(172–143 Ma, Ma et al., 2006; Wang et al., 2002; Yu and Liu, 1997;
Zuo et al., 2014), precluding the confident assessment of the genetic
association between Pb–Zn mineralization and pluton emplacement.
For the first time, we report precise ages for Pb–Zn mineralization in
the Shuikoushan district based on molybdenite Re–Os data, as well as
the timing of emplacement for granodiorite intrusions in the district
using zircon SIMS U–Pb analysis.

2. Geological background

South China consists of the Yangtze Block to the northwest and the
Cathaysian Block to the southeast, separated by the Qin-Hang
Neoproterozoic suture, and bounded by the North China Block to the
north (Fig. 1). The basement of the Yangtze Block is composed of
Archean to Proterozoic rocks overlain by a sequence of Neoproterozoic
(Sinian) to Mesozoic sedimentary cover (Chen and Jahn, 1998). The
basement of Cathaysian Block consists of Precambrian rocks overlain
by Sinian to Mesozoic cover sedimentary successions (Chen and Jahn,
1998).

Mesozoic granitoids are widespread in the Nanling Range (Fig. 1)
(IGCAS, 1979; Mo et al., 1980; Zhou et al., 2006), and economically
significantmetallic mineralization in the region is genetically associated
Fig. 1. Distribution of important Pb–Zn andW–S
Modified after Wang et al. (2003) and Peng et al
with these granitic rocks. These intrusions predominately consist of
biotite granite with peraluminous compositions and relatively high
initial 87Sr/86Sr ratios of 0.710–0.735, which were widely considered
to be of S-type (IGCAS, 1979;Mo et al., 1980; Xu et al., 1983), but recent-
ly some have been re-identified as highly-fractionated I-type or A-type
granites (e.g. Bai et al., 2005; Fu et al., 2005; Jiang et al., 2006, 2008; Li
et al., 2007a). In addition, these intrusions include small granodiorite
intrusions with metaluminous to weak peraluminous compositions
and relatively low initial 87Sr/86Sr ratios of 0.707–0.711, which were
regarded as I-type granites (Huang et al., 2015; Wang et al., 2003).

As an important part of the Nanling Range, southern Hunan hosts
W–Sn and Pb–Zn ore bodies associated with Mesozoic granitoids
(Fig. 1). The major W–Sn deposits related to granite plutons in the
area include the Shizhuyuan W–Sn–Mo–Bi deposit (Mao and Li, 1995,
1996), Yaogangxian W deposit (Peng et al., 2006), Xianghualing Sn
deposit (Yuan et al., 2008) and Furong Sn deposit (Li et al., 2007b;
Peng et al., 2007; Yuan et al., 2011), representing the largest W–Sn
metallogenic belt in the world (Mao et al., 2007). Three types of W–Sn
mineralization, including greisen-, skarn-, and quartz vein-type, are
widespread in the area. Geochronological data indicated that W–Sn
mineralization in the area occurred during 160–150 Ma (Mao et al.,
2007, 2013; Peng et al., 2006, 2008). In comparison, major Pb–Zn
deposits, usually are associated with I-type granodiorite intrusions,
examples include the Shuikoushan Pb–Zn–Au deposit (Li and Peng,
n deposits in southern Hunan, South China.
. (2006).
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1996), Baoshan Pb–Zn–Cu deposit (Lu et al., 2006) and Tongshanling
Cu–Pb–Zn deposit. The Pb–Zn mineralization in the area is mostly
hydrothermal filling type (e.g. Shuikoushan) and skarn type (e.g.
Tongshanling) (Wang et al., 1988).

3. Ore deposit geology

The Shuikoushan ore district is located about 40 km away from
Hengyang city, Hunan Province. It is situated at the southern margin
of Hengyang Cretaceous red-bed basin (Fig. 2). The stratigraphic
sequence in themining district consists of Devonian limestone, Carbon-
iferous limestone–dolomite, Lower Permian limestone (Qixia Fm.),
marlstone, argillaceous shale and siliceous rocks (Dangchong Fm.),
Upper Permian shale, siltstone (Douling Fm.) and Lower Triassic
limestone with marl and shale layers, unconformably overlain by
Jurassic and Cretaceous sandstone–shale rocks. As a result of the Triassic
and Jurassic tectonic events, sedimentary units of Devonian to Permian
ages have been folded and locally overturned and brecciated (Figs. 2, 3).

Numerous intrusive rocks are exposed in the Shuikoushan mining
district; they have a total exposed area of 4.8 km2 (Fig. 2). Among
them, the Shuikoushan granodiorite is the most important; it intruded
Permian carbonate rocks during the Jurassic period (Fig. 3a) (Ma et al.,
2006; Wang et al., 2002; Zuo et al., 2014). This intrusion is medium-
grained biotite granodiorite, with SiO2 ranging from 62.0 to 65.2 wt.%,
Al2O3 from 15.0 to 17.5 wt.%, K2O + Na2O from 5.60 to 7.55 wt.%, K2O/
Na2O N 1, and A/CNK most b1.1 (Huang et al., 2015; Wang et al.,
2003; Yu and Liu, 1997). They are metaluminous to weak peraluminous
rocks, belonging to high-K calc-alkaline series and are usually consid-
ered to be of I-type (Huang et al., 2015; Wang et al., 2003; Yu and Liu,
1997).

Within the Shuikoushan ore district, the Shuikoushan Pb–Zn–Au
deposit is one of themost important deposits in the area,which consists
of the Laoyachao Pb–Zn–Au ore block and Yagongtang Pb–Zn–Au ore
block (Fig. 3a). The Pb and Zn mineralization in the Shuikoushan Pb–
Fig. 2. Geological map for the Shuikoushan
Modified after Li and Peng (1996).
Zn–Au deposit mainly occurs in the fractured zones between the
limestone in the Qixia Fm. and the granodiorite intrusions, whereas
Au mineralization occurs in the cryptoexplosive breccia belt between
the granodiorite and marl and siliceous rocks of the Dangchong Fm.
(Fig. 3b) (Li and Peng, 1996). The Pb–Zn mineralization in the
Shuikoushan deposit is of hydrothermal fracture filling type. Skarn is
generally absent and just locally occurs in the contact zone between
the granodiorite intrusion and the carbonate rocks and contains no
economically significant mineralization.

The Laoyachao Pb–Zn–Au mining district comprises 16 orebodies,
with predominantly lens-shaped, cystic and tubular shapes. Individual
orebodies in the mining district are up to 302 m long and 38 m wide
and typically extend for about 80 to 420 m downdip. The Yagongtang
mining district consists of 10 orebodies, with lens-shaped and
stratiform-like shapes. Individual orebodies in the district are up to
1200 m long and 28 m wide and typically extend for about 50 to
520 m downdip.

Ore minerals in the Shuikoushan Pb–Zn–Au deposit include pyrite,
sphalerite and galena, with minor molybdenite and chalcopyrite.
Gangue minerals in the deposit are dominated by quartz, calcite and
fluorite with minor dolomite and clay minerals. Mineral assemblages,
ore textures as well as vein crosscutting relationships indicate that
Pb–Zn mineralization in the area can be divided into three stages,
early pyrite–quartz stage, sphalerite–galena–pyrite–quartz stage and
late carbonate stage (Fig. 4).

The early pyrite–quartz stage consists mainly of disseminated or
massive pyrite with minor chalcopyrite, molybdenite (Fig. 5a–d),
sphalerite, galena (Fig. 5e), quartz (Fig. 5f), calcite and fluorite. Pyrite
mostly appears as euhedral–anhedral grains with variable sizes and
commonly occurs as densely disseminated ormassive textures associat-
edwithminor quartz and calcite (Fig. 5e, f).Molybdenite occurs as veins
or appears with disseminated pyrite and chalcopyrite in the altered
granodiorite intrusion (Fig. 5a–d). Few sphalerite and galena grains
are disseminated in the massive ores (Fig. 5e).
Pb–Zn–Au ore district, South China.



Fig. 3. Geological map (a) and cross-section map (b) for the Shuikoushan Pb–Zn–Au deposit, South China.
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The sphalerite–galena–pyrite–quartz stage is characterized by the
widespread occurrence of sphalerite, galena and pyrite with minor
chalcopyrite, calcite, quartz and fluorite (Fig. 5g, h). Sphalerite is
brown and irregularly shaped, and is usually intergrown with galena.
Minor chalcopyrite occurs as exsolution texture in sphalerite. Sphalerite
and galena often occur as the infilling of fractures in pyrite or as
subhedral to euhedral crystals associated with pyrite (Fig. 5h).

The later carbonate stage mainly forms calcite and minor fluorite,
which fills fissures in the early ores, or occurs in the vugs (Fig. 5e).
Fig. 4. Paragenetic sequence of minerals for the Shu
4. Sampling and analytical methods

4.1. Zircon U–Pb dating

Sample SKS-36 was collected from the granodiorite intrusion in the
Laoyachao mining district, free of weathering and alteration. Zircons
were separated by conventional heavy liquid and magnetic techniques
at the mineral separation laboratory of Langfang Regional Geological
Survey, Hebei Province. Zircon grains, together with zircon standard
ikoushan Pb–Zn–Au ore district, South China.



Fig. 5. Photographs of hand specimens and photomicrographs of ore and gangue minerals collected from the Shuikoushan Pb–Zn–Au ore district, South China. (a) Molybdenite vein
associated with pyrite and minor chalcopyrite fill the fissures in the granodiorite intrusion. (b) Molybdenite vein. (c) Disseminated molybdenite associated with pyrite and quartz, cut
by calcite veins. (d)Molybdenite associatedwith pyrite and chalcopyrite (under reflected light). (e)Massivepyrite associatedwithminor disseminated galena and sphalerite, cut by calcite
vein. (f) Massive pyrite associated with quartz. (g) Brownish sphalerite coeval with galena, pyrite, calcite and minor fluorite. (h) Subhedral pyrite coeval with sphalerite and galena, and
some sphalerite and galena veinlets replaced pyrite. Abbreviations: Cal— calcite; Ccp— chalcopyrite; Fl— fluorite; Gn— galena; Mol—molybdenite; Py— pyrite; Qz— quartz; and Sp—
sphalerite.
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91500 were cast in epoxy mounts and then polished to expose half of
the crystals. All zircons were documented with transmitted and
reflected light photomicrographs and cathodoluminescence (CL)
images to reveal their internal textures (Fig. 6), and the mount was
vacuum-coated with high-purity gold prior to SIMS analysis.

Measurements of U, Th and Pb were conducted using the Cameca
IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese
Academy of Sciences (CAS), using operating and data processing
procedures similar to those described by Li et al. (2009). An uncertainty
of 1% (1 RSD) for 206Pb/238U measurements of the standard zircons was
propagated to the unknowns (Li et al., 2010). Measured compositions
were corrected for common Pb using the abundance of non-
radiogenic 204Pb. Corrections are sufficiently small to be insensitive to
the choice of common-Pb composition, and an average present-day



Fig. 6. Representative cathodoluminescence (CL) images of zircon grains for the granodiorite intrusion from the Shuikoushan Pb–Zn–Au ore district, South China.
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crustal composition is used for the common Pb (Stacey and Kramers,
1975). Uncertainties on individual analyses in the data table are report-
ed at the 1σ level; mean ages for pooled 206Pb/238U (and 207Pb/206Pb)
analyses are quoted with 95% confidence interval. Concordia diagrams
and weighted mean calculations were made using Isoplot/Ex ver_3.0
(Ludwig, 2003).

4.2. Molybdenite Re–Os dating

Seven fine-grained euhedral molybdenite samples, intergrownwith
pyrite, minor chalcopyrite and quartz, were collected from different
underground exposures at a depth about 480 m mining-level in the
Laoyachao mining district. All molybdenite filled in fissures in the
altered granodiorite intrusion and occurred as veinlets (Fig. 5a, b),
except that sample SKS-95 was disseminated in quartz veins within
the granodiorite intrusion (Fig. 5c, d).

Molybdenite separates were carefully selected under a binocular
microscope after crushed less than 80 mesh, and then grounded to
Table 1
SIMS zircon U–Pb isotopic data for the Laoyachao granodiorite intrusion from the Shuikoushan

Sample spot U Th Pb Th/U f206 207Pb/206Pb 207Pb/235U

ppm % Ratio ±1σ Ratio ±1σ

SKS-36-1 282 95 8 0.34 0.27 0.0483 3.3 0.1623 3.7
SKS-36-2 357 227 11 0.64 0.09 0.0468 2.8 0.1636 3.2
SKS-36-3 400 227 12 0.57 0.12 0.0495 1.9 0.1725 2.5
SKS-36-4 406 138 12 0.34 0.00 0.0509 2.0 0.1758 2.6
SKS-36-5 439 141 12 0.32 0.00 0.0499 1.9 0.1694 2.4
SKS-36-6 365 224 11 0.61 0.08 0.0499 2.2 0.1732 2.7
SKS-36-7 496 371 16 0.75 0.06 0.0489 1.7 0.1643 2.3
SKS-36-8 1019 544 31 0.53 0.03 0.0496 2.4 0.1703 2.9
SKS-36-9 504 308 16 0.61 0.00 0.0493 1.7 0.1696 2.3
SKS-36-10 432 160 12 0.37 0.07 0.0493 2.1 0.1677 2.6
SKS-36-11 465 276 15 0.59 0.00 0.0484 2.3 0.1669 2.7
SKS-36-12 346 192 11 0.55 0.09 0.0501 2.3 0.1716 2.8
SKS-36-13 356 104 10 0.29 0.09 0.0480 2.1 0.1684 2.7
SKS-36-14 384 157 12 0.41 0.00 0.0488 1.9 0.1736 2.5
SKS-36-15 237 103 7 0.43 0.00 0.0497 2.9 0.1686 3.3
SKS-36-16 543 223 16 0.41 0.09 0.0494 1.6 0.1705 2.2
SKS-36-17 432 186 13 0.43 0.12 0.0498 2.6 0.1683 3.0
SKS-36-18 723 477 23 0.66 0.10 0.0499 1.6 0.1713 2.2
SKS-36-19 341 172 11 0.51 0.10 0.0495 2.0 0.1754 2.8
less than 200 mesh using an agate mill. Re–Os isotope analyses were
performed at the Re–Os Isotope Laboratory, National Research Center
of Geoanalysis, Chinese Academy of Geological Sciences (CAGS). The
analytical procedures are similar to those described by Du et al.
(2004). The determination of Re and Os concentration and isotopic
compositions was performed on the inductively coupled plasma mass
spectrometer (TJA X-series ICP-MS). The molybdenite standard
GBW04436 (JDC) used in this study gave a mean value of 139.8 ±
2.0 Ma, which coincides well with the certified age of 139.6 ± 3.8 Ma
(Du et al., 2004).

Total procedure blanks are about 3.3–3.7 pg for Re and about
0.15–0.27 pg for Os, which are considerably lower than the Re and Os
concentrations in the analyzed samples in this study. The molybdenite
model ages were calculated by t = [ln (1 + 187Os/187Re)]/λ, where λ
is the 187Re decay constant of 1.666 × 10−11 year−1 (Smoliar et al.,
1996). The Re–Os isochron age was calculated with Isoplot/Ex ver_3.0
(Ludwig, 2003). Absolute uncertainties of Re–Os data are given at the
2σ level.
Pb–Zn–Au ore district, South China.

206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U

Ratio ±1σ Age (Ma) ±1σ Age (Ma) ±1σ Age (Ma) ±1σ

0.0244 1.5 111.7 77 152.7 5.2 155.4 2.4
0.0253 1.5 40.0 66 153.8 4.6 161.3 2.4
0.0253 1.5 169.2 44 161.6 3.7 161.0 2.4
0.0251 1.6 235.1 46 164.4 3.9 159.5 2.5
0.0246 1.5 188.2 43 158.9 3.5 157.0 2.4
0.0251 1.5 192.3 50 162.2 4.0 160.1 2.4
0.0244 1.5 144.1 39 154.4 3.3 155.1 2.4
0.0249 1.5 175.4 56 159.7 4.2 158.7 2.4
0.0250 1.6 161.6 39 159.1 3.4 158.9 2.5
0.0247 1.5 161.0 48 157.4 3.8 157.2 2.4
0.0250 1.6 119.7 52 156.7 4.0 159.2 2.5
0.0248 1.6 199.5 52 160.8 4.1 158.2 2.4
0.0254 1.8 101.4 49 158.0 4.0 161.8 2.8
0.0258 1.6 136.5 44 162.6 3.7 164.4 2.6
0.0246 1.5 182.0 67 158.2 4.8 156.6 2.4
0.0250 1.6 167.0 37 159.9 3.3 159.4 2.5
0.0245 1.5 186.9 59 158.0 4.4 156.0 2.4
0.0249 1.5 188.4 37 160.6 3.3 158.7 2.4
0.0257 2.0 169.3 46 164.1 4.3 163.8 3.3



Fig. 7. Zircon U–Pb concordia diagram for the Shuikoushan Pb–Zn–Au ore district, South
China.

Table 2
Re and Os isotopic data for molybdenite from the Shuikoushan Pb–Zn–Au ore district,
South China.

Sample Weight
(mg)

Re(±2σ)
(ppm)

187Re(±2σ)
(ppm)

187Os(±2σ)
(ppb)

Age(±2σ)
(Ma)

SKS-95 1.03 1638 ± 13 1029 ± 8 2748 ± 21 160.0 ± 2.2
SKS-108 1.15 1841 ± 22 1157 ± 14 3051 ± 20 158.0 ± 2.6
SKS-109 1.33 1757 ± 22 1104 ± 14 2907 ± 18 157.8 ± 2.7
SKS-110 1.38 1319 ± 18 829.0 ± 11.1 2202 ± 13 159.2 ± 2.8
SKS-111 2.16 419.9 ± 3.7 263.9 ± 2.3 709 ± 4 161.0 ± 2.4
SKS-112 1.28 948.9 ± 9.9 596.4 ± 6.2 1567 ± 10 157.5 ± 2.5
SKS-113 1.15 705.4 ± 5.6 443.3 ± 3.5 1183 ± 7 160.0 ± 2.2

Uncertainty for the calculated ages is 0.57% at the 95% confidence level.
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5. Analytical results

5.1. SIMS U–Pb age of zircon

Most zircons are euhedral, transparent, colorless and about
70–341 μm in length with aspect ratios between 1:1 and 5:1. Euhedral
magmatic-origin oscillatory zoning is common in most zircon grains
under CL (Fig. 6). Noticeably, no inherited cores were observed in
zircons. Nineteen analyses of 19 zircon grains were obtained from the
sample SKS-36 (Table 1). Their U and Th concentrations vary from 237
to 1019 ppm and 95 to 544 ppm, respectively, and Th/U ratios vary
Fig. 8. Re–Os isochron diagram (a) and weighted average age diagram (b) for mol
from 0.23 to 2.69. Common Pb is very low with f206 values b0.27%. All
nineteen analyses are concordant in 206Pb/238U and 207Pb/235U within
analytical errors (Fig. 7), yielding a well-defined concordia age of
158.8 ± 1.1 Ma (MSWD = 0.16, 95% confidence interval). This date
coincides well with the weighted mean 206Pb/238U age of 158.8 ±
1.8 Ma (MSWD = 0.40).

5.2. Re–Os age of molybdenite

TheRe–Os isotopic compositions of sevenmolybdenite separates are
listed in Table 2 and illustrated in Fig. 8. These samples display relatively
high Re concentrations, ranging from 420 to 1157 ppm. All analyzed
samples in this study yield a narrow range of model ages from
157.5 ± 2.5 to 161.0 ± 2.4 Ma, with a weighted average age of
159.2 ± 0.91 Ma (MSWD = 1.2) (Fig. 8b). All analyzed samples give a
well-defined 187Re/187Os isochron with an age of 157.8 ± 1.4 Ma
(MSWD= 1.3) (Fig. 8a). A zero-intercept reveals that the molybdenite
contains no detectable common 187Os and that all 187Os are radiogenic,
which indicates that the model ages are reliable (Luck and Allègre,
1982; Selby and Creaser, 2001; Suzuki et al., 1996). The isochron age
coincides well with the weighted average age within error, also
reflecting that the molybdenite Re–Os dating is accurate.

6. Discussion

6.1. Emplacement age of the Shuikoushan pluton

Previous studies have attempted to determine the emplacement age
of the granodiorite intrusion in the Shuikoushan ore district (Jin, 1989;
Ma et al., 2006; Wang et al., 2002; Yu and Liu, 1997; Zuo et al., 2014),
and acquired a wide range of ages (143–172 Ma). The whole-rock Rb–
Sr and biotite K–Ar ages available for the studied granodiorite fall in a
range of 143–160.7 Ma (Jin, 1989; Yu and Liu, 1997). Wang et al.
(2002) first reported the U–Pb age of 172.3 ± 1.6 Ma using the isotope
dilution (ID) method on single-grained zircon. Unfortunately, this date
is obviously older than the newly-reported SHRIMP zircon U–Pb age
(163 ± 2 Ma, Ma et al., 2006) and LA–ICP-MS zircon U–Pb age
(156 ± 1 Ma; Zuo et al., 2014). Obviously, there is a wide variation for
the granodiorite emplacement age by different dating methods, even
the zircon U–Pb dating methods gave a wide range of 156–172.3 Ma.
Therefore, a more accurate and precise emplacement age for the
granodiorite intrusion is required for the Shuikoushan ore district.

The K–Ar and Rb–Sr systems are susceptible to disturbance or even
complete resetting during alteration (Selby and Creaser, 2001; Stein
et al., 2001; Suzuki et al., 1996), thus these K–Ar and Rb–Sr dates are
not accurate. During the past several years, technical developments
have provided opportunities for improved precision and accuracy,
ybdenite separates from the Shuikoushan Pb–Zn–Au ore district, South China.



Table 3
Geochronological data available for Pb–Zn andW–Sn deposits and related granite in southern Hunan, South China.

Metal association Type of related Age of mineralization Age of related intrusion

intrusions Mineral Method Age (Ma) Reference Mineral Method Age
(Ma)

Reference

I-type granite related Shuikoushan Pb–Zn–Au Granodiorite Mol Re–Os 157.8 ± 1.4 This study Zrn SIMS U–Pb 158.8 ± 1.1 This study
Zrn LA–ICP-MS U–Pb 156.0 ± 1.0 Zuo et al. (2014)
Zrn SHRIMP U–Pb 163 ± 2 Ma et al. (2006)
Zrn ID U–Pb 172.3 ± 1.6 Wang et al. (2002)

Baoshan Pb–Zn–Cu Granodiorite Mol Re–Os 160 ± 2 Lu et al. (2006) Zrn LA–ICP-MS U–Pb 157.7 ± 1.1 Xie et al. (2013)
Zrn LA–ICP-MS U–Pb 156.7 ± 1.4 Xie et al. (2013)
Zrn SHRIMP U–Pb 158 ± 2 Lu et al. (2006)
Zrn SHRIMP U–Pb 162.2 ± 1.6 Wu et al. (2005)
Zrn ID U–Pb 173.3 ± 1.9 Wang et al. (2002)

Tongshanling Pb–Zn–Cu Granodiorite Mol Re–Os 162.2 ± 1.6 Yuan (2013) Zrn LA–MC–ICP-MS U–Pb 159.7 ± 0.8 Yuan and Wang (2013)
Zrn LA–MC–ICP-MS U–Pb 160.5 ± 0.9 Yuan, unpublished data
Zrn LA–MC–ICP-MS U–Pb 160.7 ± 0.5 Yuan, unpublished data
Zrn LA–ICP–MS U–Pb 166.6 ± 0.4 Quan et al. (2013)
Zrn SHRIMP U–Pb 163.6 ± 2.1 Jiang et al. (2009)
Zrn ID U–Pb 178.9 ± 1.7 Wang et al. (2002)

S-type granite related Huangshaping Pb–Zn–Cu–W–Mo Quartz porphyry/
granite porphyry

Mol Re–Os 159.4 ± 3.3 Lei et al. (2010) Zrn
Zrn

SHRIMP U–Pb
LA–ICP-MS U–Pb

150 ± 3
161.6 ± 1.1

Lei et al. (2010)
Yao et al. (2005)Mol Re–Os 157.5 ± 2.4 Lei et al. (2010)

Mol Re–Os 157.6 ± 2.3 Lei et al. (2010)
Mol Re–Os 154.8 ± 1.9 Yao et al. (2007)
Mol Re–Os 153.8 ± 4.8 Ma et al. (2007)

Yaogangxian W Granite Mol Re–Os 154.9 ± 2.6 Peng et al. (2006) Zrn SHRIMP U–Pb 155.4 ± 2.2 Li et al. (2011)
Phl Ar–Ar 153 ± 1.1 Peng et al. (2006) Zrn SHRIMP U–Pb 157.6 ± 2.6 Li et al. (2011)
Bt Ar–Ar 155.1 ± 1.1 Peng et al. (2006) Zrn SHRIMP U–Pb 158.4 ± 2.1 Li et al. (2011)

Furong–Bailashui Sn Granite Cst U–Pb 159.9 ± 1.9 Yuan et al. (2011) Zrn SHRIMP U–Pb 156 ± 5 Li et al. (2006)
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Zrn
Bt
Zrn
Zrn
Zrn

SHRIMP U–Pb
Ar–Ar
SHRIMP U–Pb
SHRIMP U–Pb
SHRIMP U–Pb

155 ± 6
155.1 ± 1.8
162 ± 2
156.7 ± 1.7
160 ± 2

Li et al. (2006)
Bai et al. (2005)
Zhu et al. (2005)
Li et al. (2005)
Fu et al. (2004a)

Phl Ar–Ar 150.6 ± 1.0 Peng et al. (2007)
Phl Ar–Ar 157.3 ± 1.0 Peng et al. (2007)
Phl Ar–Ar 154.7 ± 1.1 Peng et al. (2007)
Hbl Ar–Ar 156.9 ± 1.1 Peng et al. (2007)

Furong–Taoxiwo Ms Ar–Ar 159.9 ± 0.5 Peng et al. (2007)
Ms Ar–Ar 154.8 ± 0.6 Peng et al. (2007)
Ms Ar–Ar 160.1 ± 0.9 Mao et al. (2004a)

Furong–Shanmenkou Ms Ar–Ar 156.1 ± 0.4 Mao et al. (2004a)
Xintianling W Granite Ann Ar–Ar 157.1 ± 0.2 Mao et al. (2004a)

Mol Re–Os 161.7 ± 9.3 Yuan et al. (2012a)
Jinchuantang Sn–Bi Granite Mol Re–Os 158.8 ± 6.6 Liu et al. (2012) Zrn SHRIMP U–Pb 152 ± 2 Li et al. (2004)
Hongqiling Sn Ms Ar–Ar 153.6 ± 1.5 Yuan et al. (2012b) Kfs Ar–Ar 162.6 ± 3.3 Liu et al. (1997)
Shizhuyuan W–Sn–Bi–Mo Granite Ms Ar–Ar 148.2 ± 1.1 Peng et al. (2006)

Ms Ar–Ar 153.4 ± 0.2 Mao et al. (2004b)
Mol Re–Os 151.0 ± 3.5 Li et al. (1996)

Xianghualing Sn Biotite granite Cst U–Pb 157 ± 6 Yuan et al. (2008) Zrn LA–MC–ICP-MS U–Pb 160.7 ± 2.2 Xuan et al. (2014)
Ms Ar–Ar 158.7 ± 1.2 Yuan et al. (2007)
Ms Ar–Ar 154.4 ± 1.1 Yuan et al. (2007)

Jiuyishan Da'ao W–Sn Granite Mol Re–Os 151.3 ± 2.4 Fu et al. (2007) Zrn SHRIMP U–Pb 156 ± 2 Fu et al. (2004b)
Zrn SHRIMP U–Pb 157 ± 1 Fu et al. (2004b)

Xitian Sn Granite Mol Re–Os (model age) 158.9 ± 2.2 Guo et al. (2014) Zrn
Zrn

SHRIMP U–Pb
SHRIMP U–Pb

228.5 ± 2.5
155.5 ± 1.7

Ma et al. (2005)
Ma et al. (2005)Mol Re–Os (model age) 160.2 ± 3.2 Guo et al. (2014)

Mol Re–Os 150 ± 2.7 Liu et al. (2008b)
Ms Ar–Ar 155.6 ± 1.3 Ma et al. (2008)
Ms Ar–Ar 157.2 ± 1.4 Ma et al. (2008)

Hehuaping Sn Granite/granite porphyry Mol Re–Os 224.0 ± 1.9 Cai et al. (2006) Zrn LA–MC–ICP-MS U–Pb 235 ± 1.4 Zheng and Guo (2012)
Zrn LA–MC–ICP-MS U–Pb 155.9 ± 1.0 Zheng and Guo (2012)
Zrn SHRIMP U–Pb 212 ± 4 Cai et al. (2006)
Zrn LA–MC–ICP-MS U–Pb 154.7 ± 0.5 Zhang et al. (2010)

Jiepailing Sn Granite porphyry Bt Ar–Ar 91.1 ± 1.1 Mao et al. (2007) Zrn LA–MC–ICP-MS U–Pb 90.5 ± 0.9 Yuan et al. (2015)
Ms Ar–Ar 92.1 ± 0.7 Yuan et al. (2015)

Abbreviations: Ann— annite; Bt — biotite; Cst — cassiterite; Hbl — hornblende; Kfs — K-feldspar; Mol — molybdenite; Ms — muscovite; Phl— phlogopite; and Zrn — zircon.
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Fig. 9. Age histogram of W–Sn polymetallic deposits (a) and W–Sn-related granite (b) in
southern Hunan.
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enhanced spatial resolution, and more efficient data acquisition using
in-situ zircon U–Pb analysis (Gehrels et al., 2008; Gerdes and Zeh,
2006), especially the SIMS-based techniques can offer unparalleled
spatial resolution for U–Pb age dating (usually 15 to 30 μm spot
diameter and 2 to 5 μm penetration depth), thus, it is easy to observe
and avoid the possible inclusions and fractures (Košler et al., 2002; Li
et al., 2011) and it is the currently most widely accepted method for
in situ U–Pb age determinations of zircon grains (Frei and Gerdes,
2009).

SIMS zircon U–Pb analysis carried out in this paper yields aweighted
mean 206Pb/238U age of 158.8±1.8Ma (Fig. 7). This correlateswell with
the 163 ± 2Ma age by Ma et al. (2006) and the 156 ± 1 Ma age of Zuo
et al (2014). Therefore, the crystallization age of the granodiorite
intrusion for Shuikoushan can be constrained at about 158 Ma.

6.2. Mineralization age of the Shuikoushan ore district

Molybdenite can provide robust Re–Os ages because it contains
abundant Re and negligible initial or common Os (Markey et al., 1998;
Selby and Creaser, 2001, 2004; Stein et al., 2001), and it is less sensitive
to later hydrothermal,metamorphic, and/or tectonic events (e.g. Bingen
and Stein, 2003; Selby and Creaser, 2001, 2004; Stein et al., 1998, 2001;
Suzuki et al., 1996). Moreover, geologically younger, naturally fine-
grained (b2 mm) molybdenite separates appear to display little
187Re–187Os decoupling and highly reproducible dates can be obtained
using small quantities of samples (as little as 1 mg) (Selby and
Creaser, 2004; Stein et al., 2001).

In this study, the fine-grained (mostly 0.1–1 mm)molybdenite sep-
arates used for Re–Os dating were well-homogenized into 200 mesh
and have extremely high Re concentrations (420–1841 ppm), which
reveals that 187Re–187Os decoupling effects in this study are negligible,
thus the analyzed samples can yield accurate and precise molybdenite
Re–Os ages (Selby and Creaser, 2004; Stein et al., 2001).

In addition, homogenization temperatures of fluid inclusions in
sphalerite in the Laoyachao mining district vary in the range of
112.0–417.7 °C (Huang, unpublished data). These temperatures are
lower than the Re–Os closure temperature for molybdenite, which is
estimated to be about 500 °C (Suzuki et al., 1996). Therefore, the Re–
Os isotopic system in molybdenite records the age of molybdenite
crystallization.

In the Shuikoushan mining district, molybdenite formed during the
Pb–Zn mineralization stage, therefore, the absolute timing for the lead
and zinc mineralization in the mining district is estimated to be at
about 158 Ma. This coincides with the geological relationship that
some zinc mineralization fills in some fissures in the Early Jurassic
sedimentary rocks, and orebodies are controlled by the Early Yanshanian
(Jurassic) structures and occur along the contact zone between the
granodiorite and sedimentary rocks (Liu and Tan, 1996).

6.3. Relationship between Pb–Zn mineralization and related intrusions

As mentioned above, the Pb–Zn mineralization in the Shuikoushan
ore district is spatially associated with the Jurassic granodiorite.
Moreover, the timing of Pb–Zn mineralization determined in this
study (157.8 ± 1.4 Ma) coincides well with the emplacement of the
Laoyachao granodiorite (158.8 ± 1.8 Ma). Thus, Pb–Zn mineralization
and granodiorite emplacement in the district are closely associated
temporally and spatially.

In addition, previous studies indicated that progressive Re contents
transition from mantle-sourced, to mantle–crust mixing sourced, and
then to crust-sourced origin (Mao et al., 1999; Stein et al., 2001). That
is, those deposits with mantle inputs have significantly higher Re
concentrations than those with crustal origin. In the Shuikoushan ore
district, Re concentrations for molybdenite samples are extremely
high (Table 1), varying from 420 to 1841 ppm, which are similar to
the Re concentrations for molybdenite of mantle origin (N100 ppm,
Mao et al., 1999; Stein et al., 2001), and slightly higher than the data
(Re = 95–339 ppm) for the Baoshan Pb–Zn deposit (Lu et al., 2006),
but significantly higher than the Re concentrations for W–Sn deposits
in southern Hunan (e.g. Cai et al., 2006; Fu et al., 2007; Li et al., 1996;
Liu et al., 2012; Peng et al., 2006; Yuan et al., 2012a). Thus, this indicates
that major mantle substances were involved in the Shuikoushan
mineralization.

In addition, the granodiorite intrusion in the Shuikoushan ore
district is of I-type, with a crust–mantle mixed source (Huang et al.,
2015; Wang et al., 2003). Therefore, there is evidence for a genetic
relationship between the granodiorite intrusion and Pb–Zn mineraliza-
tion. This can be further supported by the oxygen and hydrogen isotopic
data for the Shuikoushan ore district, which reveal that the ore-forming
fluids of the Shuikoushan ore district are of magmatic origin, although
there is additional meteoric water in the later fluids (Liu, 1994).
Consequently, the Shuikoushan Pb–Zn deposit is spatially, temporally
and genetically related to the host granodiorite intrusions.

6.4. Implication for regional metallogeny

Based on previous limited geochronological data, Hua et al. (2005)
and Mao et al. (2008, 2013) proposed that Pb–Zn mineralization in
the Nanling Range was earlier than the W–Sn mineralization. Unfortu-
nately, recent geochronological data available for Pb–Zn mineralization
and the related intrusions in southern Hunan display about the same
ageswith theW–Snmineralization. For comparison, this paper presents
a compilation of the available geochronological data for the Mesozoic
igneous rocks, associated Pb–Zn mineralization and W–Sn mineraliza-
tion in southern Hunan as shown in Table 3 and Fig. 9, the latter is
mainly based on Peng et al. (2008).



315J.-C. Huang et al. / Ore Geology Reviews 71 (2015) 305–317
In southern Hunan, the molybdenite Re–Os isochron age for the
Baoshan deposit is 160 ± 2 Ma (Lu et al., 2006), which is coincident
with the SHRIMP zircon U–Pb age of 158 ± 2 Ma (Lu et al., 2006) and
LA–ICP-MS zircon U–Pb ages of 156.7 ± 1.4 Ma and 157.7 ± 1.1 Ma
(Xie et al., 2013) for the granodiorite from the Baoshan deposit.
Moreover, the Re–Os isochron age of molybdenite from the Yulong
deposit in the Tongshanling ore district is 162.2 ± 1.6 Ma (Yuan,
2013), which is also consistent with the LA–ICP-MS zircon U–Pb ages
of 159.7 ± 0.8 Ma, 160.5 ± 0.9 Ma and 160.7 ± 0.5 Ma for the granodi-
orite from the Tongshanling ore district (Yuan, unpublished data). As
mentioned above, the Pb–Zn mineralization age for the Shuikoushan
ore district from the molybdenite Re–Os isochron age (157.8 ±
1.4 Ma) in this paper also coincides well with the emplacement timing
of the Laoyachao granodiorite (158.8 ± 1.8 Ma). Therefore, it can be
concluded that the Pb–Zn mineralization in southern Hunan took
place at about 160–156 Ma and there are no obvious time intervals
between the magma emplacement and Pb–Zn mineralization in
southern Hunan.

It has been generally accepted that the ore-forming metals, the
ore-hosted layers, the lithologies of the ore-hosted rocks and the
associated granitoids exhibit significant differences between the
Pb–Zn deposits and the W–Sn deposits throughout the Nanling
Range (Hua et al., 2003; Xu et al., 1982, 1983). However, the large-
scale W–Sn mineralization in southern Hunan took place during
160–150 Ma as showed in Fig. 9a, which shares similar age range
with the Pb–Zn mineralization in the area. Mao et al. (2007, 2013)
suggested that the intense tectonic activity was caused by the NW-
trending subduction of the Izanagi Plate beneath the Eurasian
continent during the Jurassic. As the subduction of the Izanagi Plate
continued, continental crust gradually thickened and developed a
series of NE-trending lithospheric extensional belts and deep faults
in a back-arc setting (Mao et al., 2007, 2008, 2013). A series of granite
belts with low tDM and high εNd values (Shi-Hang Belt or Qin-Hang
Belt) reported by Gilder et al. (1996), Chen and Jahn (1998) and
Hong et al. (2002) exactly recorded the continental extension
event. Consequently, abundant magmas emplaced in the Nanling
Range and adjacent areas and caused large-scale W–Sn mineraliza-
tion during 160–150 Ma under the lithospheric extensional tectonic
regime. Therefore, just likeW–Snmineralization, the Pb–Znmineral-
ization was probably ascribed to a same lithosphere extensional
event. However, it's still unclear why W–Sn mineralization and Pb–
Zn mineralization formed at nearly coeval time, and the genetic
associations between the W–Sn mineralization and Pb–Zn minerali-
zation in the Nanling Range are needed to be ascertained.
7. Conclusions

Re–Os dating on molybdenite reveals that the Shuikoushan Pb–Zn
deposit formed at 157.8± 1.4 Ma, coincident with the new SIMS zircon
U–Pb age (158.8 ± 1.8 Ma) for the Shuikoushan granodiorite intrusion
associated with the Pb–Zn mineralization, revealing a genetic link
between the Pb–Zn hydrothermal mineralization and the granodiorite
emplacement in the area.

Integrated with other highly precise geochronological data obtained
previously, it is concluded that the regional Pb–Znmineralization formed
during 160–156 Ma in southern Hunan, rather than 180–170 Ma or
170–160 Ma as considered previously. The Pb–Zn mineralization and
major W–Sn mineralization in southern Hunan took place at about the
same time, suggesting that a common geological event is responsible
for their genesis.
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