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Application of the conventional bioreactors based on biosorption for removal of heavy metals is limited
because they can be broken through by heavy metals. The novel calcifying cyanobacteria reactors based
co-precipitation of heavy metals with carbonate minerals induced by cyanobacteria may be a promising
alternative technology to overcome the shortcomings of biosorption. In this study, removal of cadmium
(Cd) from wastewater using three calcifying bacterium Nostoc calcicola reactors was investigated.
N. calcicola can significantly increase aquatic phase pH in the reactor, associated with a decrease of
dissolved inorganic carbon (DIC) content in the effluent. During the two-month operation of the
bioreactors, over 98% of Cd removal was obtained with an initial Cd?* concentration of 2.5 M. Cd* was
mainly sequestrated in organic-bound fraction, followed by a small amount of carbonate and
exchangeable fractions in the N. calcicola cell. A crystalline compound of Ca, C, and O, as well as a
small amount of Cd on the surface of N. calcicola cell, was observed. The two-month high Cd removal
efficiency of the N. calcicola reactors shows the calcifying cyanobacteria reactors have advantages over
the conventional biosorption system, which can be shortly broken through for removal of heavy metals.
Although the results revealed that calcifying cyanobacterium reactor is a promising way to remove Cd
from water, assessment of its longer-term performance of heavy metal removal is needed.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Cadmium (Cd) can cause considerable environmental and
health problems due to its mobility and high toxicity to plants,
animals and human being because of its mobility and toxicity to
plants and animals (Alloway, 1995; Xu et al., 2014). Wastewaters
from a variety of industries, including plating, refinery, mine and
electron devices industries, frequently contain high levels of Cd
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and other heavy metals. Cd is also one of the most common toxic
metals found in surface water and groundwater in many countries
including China (Su et al., 2013). Many conventional methods such
as chemical precipitation, coagulation and ion-exchange have been
used to remove heavy metals from wastewaters. However, these
methods sometimes become less effective and more expensive
when the volume of wastewater containing low concentrations of
metal ions (Kapoor and Viraraghavan, 1995). Biosorption of heavy
metals by microbes, including bacteria, fungi, microalgae and
cyanobacteria, has been proven to be effective in removing heavy
metals from wastewater (Pan et al., 2005, 2009a,b) and it is more
cost-effective and more environmental friendly than the conven-
tional physical and chemical methods (Areco and dos Santos
Afonso, 2010; Das et al, 2008; Mufioz and Guieysse, 2006).
Biosorption of heavy metals using photosynthetic microbes such as
cyanobacteria is most cost-effective because of their autotrophy.
Thus, bioremediation of heavy metal pollution by algae and
cyanobacteria has attracted increasing research interests
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Fig.1. Schematic of the cyanobacterial reactor ((1) Inlet bottle; (2) inflow regulator;
(3) glass reactor; (4) fluorescent lamp; (5) flow regulator; (6) outlet bottle; and (7)
deflector baffle).

(Gupta et al., 2001; Davis et al., 2003; Vilar et al., 2006; Akhtar
et al., 2007; Bulgariu and Bulgariu, 2013). However, the practical
application of biosorption is very limited because of some
problems with the biosorption technology. The reactors packed
with bioadsorbents may be broken through shortly. Furthermore,
in a biosorption system considerable amount of heavy metal ions
are adsorbed by the extracellular polymeric substances (EPS)
during adsorption (Zhang et al., 2006, 2010, 2011; Pan et al., 2010)
and the EPS bound metal ions may be released into water again due
to dissociation of metal-EPS complexes or decomposition of EPS
when some environmental factors change (Zhang et al., 2013; Song
et al., 2015).

Bioremediation based on co-precipitation of heavy metal ions
with minerals produced by microbes shows great potential in
immobilization of heavy metals from water (Gadd, 2000) since
this method can overcome some limits of biosorption. When
heavy metals are precipitated with the biogenic minerals, they are
usually incorporated into the lattice of mineral crystals, and the
lattice trapped heavy metals are geologically stable. A variety of
microbially produced minerals such as calcite have been proven
to be effective in immobilization of heavy metal ions (Gadd, 2000;
Achal et al., 2011, 2012a,b,c, 2013; Li et al., 2015). Biomineraliza-
tion based on non-photosynthetic or photosynthetic microbes
induced calcite precipitation (MICP) is one of these promising
techniques to immobilize toxic metals with additional advantages
over current bioremediation techniques (Pan, 2009; Achal et al.,
2011, 2012a,b,c, 2013). Some cyanobacteria (e.g., Nostoc calcicola)
can efficiently produce calcium carbonate minerals around their
cells during their photosynthesis (Kawaguchi and Decho, 2002;
Obst et al., 2009) and are promising candidates for decontamina-
tion of heavy metals based on MICP. On one hand, the ambient CO,
around the cyanobacterial cell is continuously consumed during
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Fig. 2. Flow chart for analysis of Cd and Ca speciation in cyanobacterial biomass.
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Fig. 3. Water pH change of three cyanobacterial reactors during 12 h of illumination
time.

microenvironment near the cell. On the other hand, EPS on the
surface of cell usually has strong binding capacity for cations such

photosynthesis, which increases water pH of the as Ca?* (Pan, 2010). The increased pH and Ca concentration in the
Table 1
Chemical composition of tap water.
Element Mn Cu Zn Cr Pb Ni Cd Al Ca Co Sr Fe
Content (mg/L) 0.36 0.007 0.018 ND 0.004 0.15 0.085 2.64 19.9 0.045 0.12 0.62
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microscale environment around the cell generates supersaturation
of Ca%* and carbonate ions and consequently induces precipitation
of calcium carbonate minerals. During precipitation of carbonate
minerals (e.g., calcite), metal ions with ion radius close to Ca®*,
such as Cd®* and Cu?*, may be incorporated into the calcite crystal
by their replacement of Ca®* in the lattice (Pan, 2009). This makes
cyanoremediation (Mani and Kumar, 2014) based on calcifying
cyanobacteria a better way to remove heavy metals than
conventional biosorption.

N. calcicola is one of the nitrogen fixing cyanobacteria with
strong calcification ability to form carbonate sediments (Arp et al.,
1999). In addition, Nostoc is not toxic to animals and human being
and some Nostoc species are edible. Therefore, N. calcicola can be
safely used for bioreactor for removal of heavy metals. In addition,
Nostoc cyanobacteria are nitrogen fixer, which can reduce
feed cost of nitrogen. This study aims to (1) investigate the
performance of calcifying N. calcicola reactors for Cd removal and
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(2) reveal the removal mechanisms of Cd by cyanobacterial
calcification.

2. Materials and methods
2.1. Cyanobacterium strain and culture

N. calcicola (CCAP1453/1), purchased from Scottish Association
for Marine Science, was cultivated in batch culture of Jaworski’s
Medium (Thompson et al., 1988) at 25°C and light intensity of
30 wmol/(m?s) with a 12 h/12 h light-dark cycle.
2.2. Bioreactor setup and start-up

Three identical cuboid reactors (R1, R2, and R3) were set up to

evaluate the Cd removal performance in continuous mode. The
reactors (Fig. 1) were made of plexiglass, with dimensions of
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Fig. 4. Water pH of three bioreactors during their two months of operation (R1-a, R2-a, R3-a); concentrations of CO3%~, HCO;~ and DIC of three bioreactors during their two

months operation (R1-b, R2-b, R3-b).
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100cm x 10cm x 7.8 cm and a working volume of 7500 mL. Six
deflector baffles (95 cm x 7.8 cm) were fixed perpendicularly to the
bioreactor bottom at equal spacing interval to increase the carrier
surface for N. calcicola and the flow path was thus increased to 7 m.
Four 110 cm-long fluorescent lamps were used as light source. The
distance between the upper surface of the reactor and fluorescent
lamps is 4cm to achieve an illumination intensity of 30 pmol
m~2s~! on the top surface of the reactors. The photoperiod for
bioreactors was 12 h:12 h (light:dark). In order to avoid the effect of
vaporization, the bioreactors were covered with glass plates.
After two months of cultivation in the reactors, N. calcicola
biofilms formed on the interior walls of the reactors. Artificial
wastewater was prepared by adding certain amount of CdCl, and
CaCl; in boiled tap water. The chemical composition of boiled tap
water is shown in Table 1. The initial pH of the boiled tap water was
8.0 for reactors 1 and 3 and 8.7 for reactor 2. During the operation
of the reactor, pH was not adjusted. The reactors were operated in
fed-batch mode, and wastewater was fed with a hydraulic
retention time of 10 days. Ca®* concentration in R1, R2, and
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R3 was 0, 2.5, and 5mM, respectively. Cd>* concentration of the
artificial wastewater for all reactors was set as 2.5 LM because Cd?*
concentration in real wastewater usually ranged from a few M to
tens of wM (Kulkarni and Kaware, 2013). The reactors were
operated at 25°C, and water samples at 0 (the inlet), 1, 3, and 7m
(the outlet) from the feed wastewater inlet were collected
periodically.

2.3. Analytical methods for water samples and light intensity

Concentrations of COs2~ and HCO;~ and pH of the water
samples were determined immediately after sampling using an
automatic potentiometric titrator (Metrohmtitrator 702 SM
Titrino, Switzerland) equipped with a glass electrode (Metrohm
6.0130.100); 0.0294 M H,S04 (Sigma, AR) was used as the titrant
(Allison et al., 2010). Concentrations of Ca>* and Cd®* in the water
samples were determined by ICP-MS (ELAN DRC II, PerkinElmer,
USA) (Zhang et al., 2014). The ICP-MS instrument was calibrated by
the Agilent multi-element calibration standard-2A. The water
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Fig. 5. Ca®* concentration of the influent and effluent of the three bioreactors during their two months of operation (R1-a, R2-a, R3-a); Cd?*concentration of the influent and
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samples were filtrated through a 0.22 uwm acetate cellulose
membranes (Beihua Liming Inc., Beijing, China), and then acidized
by concentrated nitric acid of analytical grade (purity >95%) for
measurement. Light intensity on the top surface of reactors was
measured by a radiation illuminance meter (Model ESM-QI,
Ecotron Scientific Inc.).

2.4. Speciation analysis of Ca and Cd in algal biomass

On the 50thd of running, a certain amount of attached
cyanobacterial biomass at 0, 1, 3, and 7m from the water inlet
was obtained from each reactor and subjected to freeze-drying
(Labconco IEC 61010-1, USA). Afterward, 20-40 mg of dry biomass
was analyzed to determine the exchangeable, carbonate bound and
organic bound fractions of Cd and Ca in N. calcicola biomass (Siong
and Asaeda, 2009). The extraction steps were shown in Fig. 2.

The Cd and Ca contents in the extract of each step were
simultaneously determined by ICP-MS (Zhang et al., 2014), and
then calculated into the content of the algal biomass.

The freeze-dried algal biomass was fixed on the carbon plate
and sprayed with gold. The samples were analyzed using a
scanning electron microscope (SEM, ZeissSuper 55VP, Germany)
coupled with an energy dispersive X ray spectrometer (EDX, Bruker
XFlash 5010, Germany) (Achal et al., 2013).

3. Results and discussion
3.1. pH changes in the effluent

The pH of the three reactors increased from 8-8.7 to
9.7-10 within 8h and thereafter remained stable (Fig. 3). This
finding suggests the strong photosynthetic activity of N. calcicola
under the light. When dissolved inorganic carbon (DIC) in the

wastewater was consumed during photosynthesis, OH™ was
released (Merz-Prei3 and Riding, 1999), thereby causing an
increase of pH. Extensive studies showed that water pH increased
due to photosynthesis of cyanobacteria or algae (Shiraishi, 2012;
Bundeleva et al., 2014).

3.2. pH, CO5?>~, HCO5~, and DIC changes in the reactors

During the operation period, the pH of R1, R2, and R3 effluents
increased to 9.2, 9.6, and 9.3, respectively, much higher than 7.7 of
the influents (Fig. 4), indicating that the photosynthesis of algae
increases the pH (Small and Adey, 2001). The much lower DIC
concentrations in the effluents compared with those of the
influents suggest the efficient use of DIC by N. calcicola for
photosynthesis. The changing trend of CO32~ concentration was
consistent with the pH of the effluent, whereas HCOs~ concentra-
tion showed an opposite changing trend to CO32~ concentration.
This finding implies that COs?~ in the aquatic phase is mainly
caused by the hydrolysis of HCOs ™ at high pH (Ramaraj et al., 2015).

3.3. Changes of Ca®* concentration and Cd** removal

After 6d, tap water was replaced with wastewater influent in
R2 and R3, whereas R1 was maintained for background control. The
results showed that Ca* concentrations in the effluent were higher
than those in the influent during the late operation stage. This
finding may be attributed to the fact that Ca fixed by cyanobacterial
cells was partially released because of death of algal cells. The
content of the three reactors was oversaturated with Ca®* and
supported normal metabolism, and then induced CaCOs deposits
(Obst et al., 2009).

Cadmium ions were efficiently removed by over 98% in the
three reactors. During operation, Cd?* concentration was reduced
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remarkably from 326.1 pug/L to 5.6 wg/L in R1, 319.6 ng/L to
3.9ug/L in R2, and 301.5+30.9 pug/L to 4.4 pg/L in R3. Cd?*
removal by these bioreactors are better than some other
bioreactors such as membrane bioreactors (MBR). For example,
Mahmoudkhani et al. (2014) reported that the membrane
bioreactor provided a Cd?* removal of 84% at an initial Cd
concentration of 0.48 mg/L. Some other bioadsorbents showed
higher removal of Cd but these bioreactors were broken through
shortly (Tahir and Iram, 2012). In the present study, although
more than 98% of Cd?* was removed and Cd?* concentration in the
effluent is close to water quality standard for Cd?*, more work
should be done in the future to optimize the bioreactor to
increase its performance.

The results elaborated that Ca®* in tap water is sufficient
as an element source for normal algal reactor. Additional Ca
source is not required in the current study for bioreactors R1,
R2 and R3. It provides the view of cost-down in further
application of similar type of reactors in cyanoremediation of
Cd?* contaminated water.
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8 AE Total: 5263 100.00 100.00

>

3.4. Morphology changes of Ca and Cd in algae biomass

Ca in cells mainly existed in exchangeable fraction at different
positions in the three reactors (Fig. 6). In R2 and R3, Ca content in
the cells increased first, and then decreased with the increase of
distance from the reactor inlet. A small difference was observed
between the content of carbonate-bound Ca and organic-bound Ca
at 0 and 1 m away from the inlet.

Cd in cells occurs mainly in the form of organic-bound fraction
in all the three reactors, implying that Cd®* was principally
absorbed into the cells. The amount of Cd in the cells gradually
declined with increasing distance from the inlet, and reached the
minimum at outlet of the reactors. This finding agreed well with
the Cd?* removal data in Fig. 5. The occurrence of Cd in carbonate
fraction indicates that some Cd?* was removed because of its
co-precipitation with calcium carbonate (Achal et al.,, 2011, 2012a,
b,c, 2013). In R1, the exchangeable fraction of Cd was significantly
higher than that of carbonate fraction (at p=0.05). In R2 and R3, the
exchangeable and carbonate fractions were comparable. The
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C. Zhao et al./Ecological Engineering 81 (2015) 107-114 113

higher carbonate fraction may be due to the incorporation of Cd
into calcite which was formed when additional of Ca was fed and
higher pH in R2 and R3 than R1 (Fig. 4) (Liang et al., 2013). Higher
pH led to higher concentration of CO3%>~. The average CO3%~
concentrations of R2 and R3 are 0.38 and 0.31 mM, respectively,
higher than that of R1 (0.29 mM).

3.5. Speciation analysis of Ca and Cd in cyanobacterial biomass

Crystalline precipitates were observed around N. calcicola cells
(Fig. 7). EDX analysis revealed that the crystals are composed of C,
0, Ca, Au and Cd. The high content of Au is attributed to the gold
spraying on the surface of the sample during the sample
preparation. Thus, the crystalline materials are mainly CaCOs,
which are formed extracellularly by N. calcicola. This finding is
consistent with the formation of CaCO3 by Synechococcus (Obst
et al., 2009). The small amount of Cd in the carbonate crystals
implied that Cd was removed from water partly as precipitates of
CdCOs or co-precipitates with CaCOs. In a MBR biosorption system
Cd was principally removed by its extracellular adsorption
(Mahmoudkhani et al., 2014).

Cais helpful in removing Cd in the cyanobaceterial reactor. First,
Ca is a necessary co-factor of oxygen evolution complex of
photosynthetic organisms (Vrettos et al., 2001) and an essential
macroelement for metabolism. Thus, the photosynthesis of
N. calcicola was enhanced under Ca-rich condition, which favors
the removal of Cd. Ca-rich condition favored precipitation of
CaCOs;. The ionic radius of Cd?*, Cu?>* and Pb?* are close to that of
Ca®* and these ions can enter the lattices or defects of CaCO;
crystals during precipitation of CaCO5; induced by N. calcicola
(Thakur et al., 2006; Pan, 2009; Achal et al., 2011). In other words,
heavy metal ions can be removed through precipitation with
CaCO3 by a mechanism mediated by cyanobacteria. The calcite
crystal, one of the common calcium carbonate crystal shapes, is
highly stable in the ambient environment. Thus, after the ions, such
as Cd?*, Cu®*, and Pb?" are incorporated into the lattice of the
calcite crystal, they are stably immobilized in the environment
(Pan, 2009). Our findings suggest that bioreactor based on
precipitation of CaCOs; induced by N. calcicola is a potential
cost-effective method for removing Cd.

4. Conclusion

N. calcicola can significantly increase the aquatic pH in reactor
and decrease the DIC content in the effluent. Cd can be removed
effectively by N. calcicola reactors during the two-month operation.
Cd species in N. calcicola biomass was dominated by organic-bound
fraction, followed by small amount of carbonate-bound and
exchangeable fractions, indicating that the crystallization of CaCO3
induced by N. calcicola contributes to the removal of Cd in the
reactors. The long-term efficient operation shows that calcifying
cyanobacterium reactor can overcome some limit of breakthrough
of biosoroption reactor and is a promising way for removing Cd from
water. Furthermore, N. calcicola is a photosynthetic bacterium and
an efficient photosynthetic bacterium and nitrogen fixer and there
are enough other mineral nutrients in natural water, almost no
operation cost is needed for the N. calcicola bioreactor. However,
because considerable Cd was immobilized as the organic-bound
fraction, which implies the re-release of Cd after cell death, long-
term performance of heavy metal removal by such bioreactor
should be assessed in the future study. In addition, it is also
necessary to elucidate the types of calcification, which is important
for understanding the mechanisms underlying heavy metal
removal by calcifying cyanobacteria or algae and stability of the
immobilized heavy metals.
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