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Abstract Global warming as a result of rapid increase in

atmospheric CO2 emission is significantly influencing

world’s economy and human activities. Carbon sequestra-

tion in phytoliths is regarded as a highly stable carbon sink

mechanism in terrestrial ecosystems to mitigate climate

change. However, the response of plant phytolith-occluded

carbon (PhytOC) to external silicon amendments remains

unclear. In this study, we investigated the effects of basalt

powder (BP) amendment on phytolith carbon sequestration

in rice (Oryza sativa), a high-PhytOC accumulator. The

results showed that the contents of phytolith and PhytOC in

rice increased with BP amendment. The PhytOC produc-

tion flux in different rice plant parts varied considerably

(0.005–0.041 Mg CO2 ha-1 a-1), with the highest flux in

the sheath. BP amendment can significantly enhance flux of

phytolith carbon sequestration in croplands by 150 %. If

the global rice cultivation of 1.55 9 108 ha had a similar

flux of PhytOC production in this study, 0.61 9 107 to

1.54 9 107 Mg CO2 would be occluded annually within

global rice phytoliths. These findings highlight that exter-

nal silicon amendment such as BP amendment represents

an effective potential management tool to increase long-

term biogeochemical carbon sequestration in crops such as

rice and may also be an efficient way to mitigate the global

warming indirectly.

Keywords Phytolith � Carbon sink � Carbon

sequestration � Basalt powder amendment � Rice

1 Introduction

The increase of global CO2 emissions has become an

increasingly urgent environmental problem as it may cause

climate warming [1–4]. Carbon sequestration in terrestrial

ecosystems has been considered as an important process to

mitigate global climate warming [5–8]. However, some

organic carbon temporarily fixed in terrestrial vegetation

will be rapidly oxidized into CO2 and dissolved into water

to form water-soluble organic carbon after plant litter

decomposition. Therefore, long-time biogeochemical car-

bon sequestration mechanisms in terrestrial ecosystems

remain to be investigated.

Phytoliths, also known as plant opals, are amorphous

silica deposited in plant tissues during plant growth [9–11].

Phytoliths are found in most plant species, and their con-

tent varies greatly, mostly 0.3 %–12 % [10–16]. Generally,

phytolith content in Poaceae and Cyperaceae is much

higher than that in other plants [17]. Some organic carbon

may be occluded within phytoliths as a result of phytolith
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formation during plant growth, and the carbon content of

phytoliths ranges 0.5 %–6 % [7, 15, 16, 18–21]. Although

the annual phytolith carbon sequestration was small rela-

tive to the terrestrial vegetation carbon sequestration [22,

23], phytolith-occluded carbon (PhytOC) may be preserved

in soils for several thousand years when dead plant mate-

rials decompose and the phytoliths are released into the soil

[9, 24]. In some soils and sediments after 2,000 years of

PhytOC accumulation, PhytOC can even represent up to

82 % of the total organic carbon [9, 15]. Therefore, the

potential of phytolith carbon sequestration in soil–plant

ecosystems is significant and stable at century time scales.

Cereals (e.g., rice, wheat and maize) and other Si-rich

crops (e.g., sugarcane) [18] can produce a large amount

of PhytOC and may play a crucial role in the long-term

terrestrial carbon sequestration [9, 15, 19, 25–27]. For

example, Song et al. [26] indicated that the potential of

phytolith carbon sink in the global cropland was 2.6

(±1.0) 9 107 Mg a-1 that may represent about 22 % to

58 % of the global net carbon sequestration in crop soil

during 1961–2100. Recent researches on phytolith carbon

sequestration in crops mainly focused on sugarcane [18],

millet [21], wheat [19] and rice [15], based on analytical

data of phytolith and PhytOC contents. For example, Li

et al. [15] indicated that PhytOC content in biomass

depends not only on the C content of phytoliths but also

on phytolith content, implying that external silicon (Si)

amendment may also improve PhytOC production

through enhancing phytolith production during growth of

crops, especially rice. Basalt is widely distributed in the

world. Although the content of total SiO2 is lower,

minerals such as augite and anorthose in basalt are more

abundant and more rapidly weathered, releasing more

dissolved silicon than other igneous rocks (such as

granite). Although mulching organic matter (e.g., rice

straw) has been suggested to increase soil PhytOC

accumulation in bamboo forests [28], the total amount of

PhytOC does not increase and the regulation mechanisms

of phytolith carbon sink through external silicon amend-

ment have not been demonstrated. The objective of this

study is to investigate the response of rice phytolith

carbon sequestration to basalt powder amendment, to

offer references for management of phytolith carbon

sequestration in agricultural ecosystems.

2 Materials and methods

The pot experiment was carried out at Zhejiang Agricul-

tural and Forestry University, Lin’an, Zhejiang Province,

eastern China (29�560–30�270N, 118�510–119�520E), during

April to July, 2012. The site has a subtropical and mon-

soonal climate, with a mean annual precipitation of

1,000–2,000 mm and a mean annual temperature of

15.8 �C. There are 234 frost-free days.

2.1 Pot experiment

Fresh basalt was sampled from Xinchang County, Zhejiang

Province, in July 2011 (29�280N, 120�590E). The basalt

consists of SiO2 48.15 % ± 2.84 %, Al2O3 13.53 %

± 0.48 %, Fe2O3 13.59 % ± 1.23 %, P2O5 0.61 %

± 0.42 %, K2O 1.31 % ± 0.17 %, CaO 8.48 % ± 0.71 %

and MgO 6.53 % ± 1.36 %. Basalt blocks were crushed by

hammer and machine, and then passed through a 0.85-mm

mesh stainless steel sieve. The experimental soil (Gleysols)

was taken from a paddy field of an agricultural testing base of

Zhejiang Agricultural and Forestry University. The basic

physical and chemical properties of the soil were as follows:

pH 5.34 ± 0.02, soil organic matter 30.26 ± 4.28 g kg-1,

available Si (silicon that could be easily absorbed and uti-

lized by plant) 155.59 ± 22.73 g kg-1, available phospho-

rus (phosphorus that could be easily absorbed and utilized

by plant) 113.87 ± 1.35 mg kg-1, available potassium

10.33 ± 1.11 mg kg-1 and available nitrogen 87.15 ±

2.47 mg kg-1. The analytical methods were after Lu [29].

Jiayu 253, a widely distributed and high yielding rice

(Oryza sativa) cultivar, was selected in this study. BP

amendment was applied at levels of 0 (non-amendment

control), 50, 100, 250 and 500 g pot-1 (CK-0, CK-1, CK-2,

CK-3 and CK-4, respectively) with three replicates. Each

pot had a diameter of 0.24 m and a height of 0.28 m. Each

pot contained 8.5 kg soil, and rice was grown in each pot

under the same irrigation condition and accurate fertilizer

control.

2.2 Sample collection and analysis

Plant and surface soil (0–10 cm) samples were collected

after 102 days on 26 July, 2012. Soil was removed from the

roots. Plant samples were divided into sheath, leaf, flag leaf

and stem. Rice samples were washed three times with

distilled water, three times with deionized water and oven-

dried at 75 �C to a constant weight. Finally, each rice tissue

sample was divided into two subsamples: one subsample

was ground thoroughly for analysis of rice Si content and

the other subsample was cut into small fragments (\5 mm)

for the extraction of phytoliths [15].

The analysis of Si content in plant and soil samples was

described by Song et al. [11] and Li et al. [15]. Microwave

digestion [30] in combination with Walkley-Black diges-

tion [31] was used to extract phytoliths from all rice

samples. The purity of phytoliths was checked using the

method of Li et al. [15]. The extracted phytoliths were

thoroughly dried at 75 �C for 24 h and weighed to obtain

the phytolith content of samples. The phytolith sample was
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dissolved in solution with HF (1 mol L-1) at 60 �C for

60 min, and the released carbon was determined using the

traditional potassium dichromate method [15, 16, 29]. The

carbon data were monitored with standard soil samples of

GBW07405 [15]. Precision was\7 % for measurement of

C content in phytoliths [10, 15].

2.3 Statistical methods

The PhytOC content of the organs (mg g-1) was calculated

using the following equation [32]:

PhytOCcontentof organs¼ Phytolithcontent

�Ccontentof phytoliths=1000;

ð1Þ

where phytolith content represents the weight of phytolith

in unit organ (mg g-1) and C content of phytoliths repre-

sents the weight of carbon in unit phytolith (mg g-1).

PhytOC production flux for rice can be estimated from

the data of PhytOC content of organs and the aboveground

net primary production of rice organs (ANPP, in Mg ha-1

a-1) as [11, 32]

PhytOC production flux ¼ PhytOC content of organs

� ANPP� 44=12; ð2Þ

where PhytOC production flux is the sum of the PhytOC

production from rice organs (not including grain and root)

(Mg CO2 ha-1 a-1). The PhytOC content of organs

(mg g-1) can be estimated from Eq. (1).

PhytOC production rate can be estimated from data of

PhytOC production flux and rice area as

PhytOC production rate ¼ PhytOC content flux� area;

ð3Þ

where PhytOC production rate is total PhytOC production

by rice per year (Mg CO2 a-1); PhytOC content flux can be

estimated from Eq. (2), and area (ha) is the area of rice

production.

The data used for these estimates were the means of the

three replicates. Analysis of variance (ANOVA) was applied

to compare the different effect of treatments. Duncan’s

multiple range test (using SPSS 15.0) was used to analyze the

rice sample data to determine the significance of difference.

3 Results

The dry biomass of rice increased from 162.2 to 257.6 g

pot-1 with BP amendment. BP amendment increased the

phytolith content of each organ, and the increase was clearly

related to increasing BP amendment rates (Table 1). The

phytolith content in all organs varied significantly from 5 to

37 mg g-1 (Table 1) (P \ 0.05). Generally, the phytolith

content in leaf was the highest, ranging 27–37 mg g-1 with

an average of 32 mg g-1. The BP amendment had a signif-

icant impact on the C content of phytoliths, which varied

significantly in the range of 12–31 mg g-1. The C content of

phytoliths in flag leaf was the highest with an average of

28 mg g-1. The PhytOC contents in the different rice organs

for different treatments varied significantly (P \ 0.05) in the

range of 0.10–0.74 mg g-1. The highest PhytOC content

was in flag leaf, ranging 0.34–0.74 mg g-1 with a mean of

0.60 mg g-1. The BP amendment clearly increased the flux

of PhytOC production in all organs from 0.005 to 0.041 Mg

CO2 ha-1 a-1. The highest increase of PhytOC production

flux was in CK-3 and CK-4 treatments. The flux of PhytOC

production in the sheath (0.019–0.041 Mg CO2 ha-1 a-1)

was generally much higher than that of other organs.

4 Discussion

4.1 Effects of BP amendment on rice phytolith carbon

sequestration

Previous studies have revealed that the contents of SiO2

and phytoliths of cultivated rice can be increased consid-

erably by supplying Si nutrition (e.g., straw biochar, slag

mucks and Si fertilizers) [15, 26, 33–38]. Chemical

weathering of primary minerals in basalt powder (BP) may

release dissolved silicon [38]. The processes of basalt

crushing and rice silicon uptake may enhance chemical

weathering of primary silicate minerals in basalt and

accelerate the release of dissolved silicon [10, 39]. In

addition, Song et al. [10] indicated that plant’s growth and

their relevant microorganism community can further

enhance silicate weathering processes through excreting

root exudates. Therefore, it is promising to increase rice Si

absorption and phytolith content through BP amendment.

The strong positive relationship (R2 = 0.664–0.9646,

P \ 0.05) between the SiO2 content and phytolith contents

in all rice organs (Fig. 1a) and the much higher phytolith

contents in rice organs with BP amendment than that of the

control (Table 1; Figs. 2, 3) support the above hypothesis

that BP amendment can enhance phytolith production

through increasing Si supply and rice Si uptake though

many other factors (e.g., varieties, location, disease resis-

tance and fertilizer requirements) may also influence plant

phytolith content [15, 19, 21, 35, 40, 41].

The strong positive correlations between the PhytOC

content of organs and the phytolith content (R2 =

0.5358–0.9829, P \ 0.05) (Fig. 1b) and between the Phy-

Sci. Bull. (2015) 60(6):591–597 593

123



tOC content of organs and the C content of phytoliths

(R2 = 0.5245–0.7994, P \ 0.05) (Fig. 1c) imply that

PhytOC content of organs depends not only on the C

content of phytoliths but also on phytolith content. The

study of Li et al. [15] also supported the findings of this

study.

Considering the complex situation of afforestation,

reforestation (e.g., bamboo with high PhytOC content) [7,

26, 42], land use change, location, climatic conditions [7,

15] and the wide variety of crop attributes (e.g., yield,

quality, disease resistance, etc.) that are valued by land

managers, it is unlikely that crops will be selected solely on

the basis of their C content of phytoliths to improve the

production flux of PhytOC [15]. Thus, silicon fertilization

might be an alternative way to enhance the production flux

of PhytOC in crop ecosystems. Recent researches [15, 26]

have revealed the possibility to enhance the PhytOC con-

tent in crops by regulating silicon nutrient. The rice Phy-

tOC production flux in this study showed an increasing

trend under the different BP amendment treatments

(Fig. 3), and this trend was much stronger for sheaths than

for the other organs, further demonstrating that it is

promising to improve the PhytOC content of organ dry

biomass in rice by BP amendment, an external silicon

amendment.

4.2 Potential of phytolith carbon sequestration in rice

and other crop: at a national and global scale

Compared to the annual organic carbon sequestration in

terrestrial vegetation [22, 23], the quantity of phytolith

carbon sequestration is small. However, the potential and

ability of phytolith carbon sequestration are significant at a

century time scale because PhytOC is highly resistant

against decomposition, and may be preserved stably in

soils for several thousand years when dead plant materials

decompose and the phytoliths are released into the soil [9,

24].

Based on Eqs. (2) and (3) and the yields (for double rice

cropping systems) of rice biomass with the different BP

amendment rates, this study estimates that BP amendment

can enhance the fluxes of PhytOC production in rice from

0.04 to 0.10 Mg CO2 ha-1 a-1 (Fig. 3) (P \ 0.05). Using

the rice planting area of China in 2012 (2.96 9 107 ha)

[15] and rice PhytOC production flux, the rates of PhytOC

production with BP amendment (CK-0 to CK-4) increased

significantly from 0.12 9 107 to 0.29 9 107 Mg CO2 a-1.

If the global rice plantation of 1.55 9 108 ha had a similar

flux of PhytOC production in the present study, 0.61 9 107

to 1.54 9 107 Mg CO2 could be occluded annually within

phytoliths in global rice ecosystems, being equivalent to

Table 1 The contents of phytolith, PhytOC and SiO2 content of organs, and C content of phytoliths in organs for rice amended with BP

Rice organs Treatments a Phytolith contents C content of phytoliths PhytOC content of organs SiO2 content

Mean (SD) (mg g-1) Mean (SD) (mg g-1) Mean (SD) (mg g-1) Mean (SD) (mg g-1)

Sheath CK-0 26.19 (1.69) 19.94 (0.12) 0.52 (0.02) 31.25 (0.38)

CK-1 28.93 (2.98) 19.60 (1.99) 0.56 (0.02) 33.31 (1.78)

CK-2 28.76 (3.40) 19.12 (1.83) 0.56 (0.02) 35.16 (1.12)

CK-3 31.89 (2.69) 22.80 (0.29) 0.73 (0.08) 35.57 (1.35)

CK-4 33.70 (2.66) 18.68 (0.34) 0.63 (0.03) 34.92 (1.27)

Leaf CK-0 26.85 (0.06) 15.52 (1.04) 0.42 (0.04) 34.48 (1.10)

CK-1 29.50 (0.10) 14.04 (1.52) 0.41 (0.06) 38.27 (4.33)

CK-2 31.52 (0.44) 15.31 (0.28) 0.48 (0.02) 40.14 (0.10)

CK-3 37.12 (2.69) 13.60 (1.29) 0.50 (0.17) 47.28 (3.00)

CK-4 36.90 (0.12) 12.37 (1.44) 0.46 (0.11) 44.51 (0.85)

Flag leaf CK-0 13.70 (2.40) 22.94 (1.35) 0.34 (0.06) 27.11 (1.22)

CK-1 18.10 (1.56) 27.39 (1.44) 0.50 (0.08) 33.76 (2.23)

CK-2 22.55 (5.10) 30.54 (1.75) 0.68 (0.10) 35.37 (4.91)

CK-3 25.10 (0.41) 29.63 (0.63) 0.74 (0.08) 37.88 (2.19)

CK-4 25.61 (4.56) 28.83 (3.07) 0.73 (0.02) 37.94 (3.36)

Stem CK-0 5.20 (0.85) 19.19 (2.23) 0.10 (0.00) 6.97 (1.13)

CK-1 6.50 (0.71) 23.21 (2.80) 0.16 (0.01) 10.46 (0.47)

CK-2 8.89 (2.40) 19.24 (0.75) 0.17 (0.04) 9.57 (0.54)

CK-3 8.20 (0.28) 21.55 (3.77) 0.18 (0.06) 10.75 (0.25)

CK-4 11.29 (4.09) 26.07 (1.14) 0.30 (0.12) 13.39 (2.17)

a BP amendment was applied at 0 (non-amendment control), 50, 100, 250 and 500 g pot-1 (CK-0, CK-1, CK-2, CK-3 and CK-4, respectively)

with three replicates
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0.02 %–0.05 % of the global CO2 emission amounts

(30100 9 106 Mg) in 2007 [43]. This is slightly lower than

1.94 9 107 Mg CO2 a-1, a value reported by Li et al. [15]

as Jiayu 253 has slightly lower phytolith and PhytOC

contents than that reported by Li et al. [15]. However, we

find a 150 % increase in flux of phytolith sequestration of

CO2 with BP amendment compared to controls in this

study.

Cereal crops were well known as the high silicon and

PhytOC accumulators, especially rice, wheat and maize [15,

19, 26], and there may exist a similar PhytOC increase by BP

amendment. If the 150 % increase was applicable to

phytolith sequestration of CO2 in world rice [15], wheat [19]

and maize [26], the CO2 occluded within phytoliths of these

crops would be 4.85 9 107, 1.80 9 107 and 1.54 9 107 Mg

a-1, respectively. The annual 8.19 9 107 Mg CO2 occlusion

in phytoliths of these cereals would be equivalent to 0.27 %

of the global CO2 emission amounts (30,100 9 106 Mg) in

2007 [43]. Therefore, the stable phytolith carbon sink may be

a significant mechanism to mitigate CO2 emission and

should not be neglected in the future.

Although there must be certain variation between vari-

ous trials in terms of dosage, field conditions and

Fig. 1 Correlations of (a) SiO2 content with phytolith content of

organs, (b) PhytOC content of organs with phytolith content of rice

organs, (c) PhytOC content of organs with the C content of phytoliths

of organs in rice amended with BP Fig. 2 Distribution of (a) phytolith content of organs, (b) C content

of phytoliths, (c) PhytOC content of organs in rice amended with BP.

Error bars represent the standard deviations of the means
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management practices, our simple calculation based on

area indicates that PhytOC in crops such as rice can be

significantly enhanced by BP amendment. This demon-

strates that BP amendment is a feasible measure to increase

the phytolith carbon sink. However, further works such as

the response of phytolith carbon sequestration to crop

species and cultivars with different Si accumulation to

different fertilization dosage should be done to more pre-

cisely estimate phytolith carbon sequestration potential and

guide the practices of carbon management in agricultural

ecosystems. In addition, while rock powder amendment

can be extensively applied in the field to improve phytolith

carbon production under different climatic conditions, the

impact of rock powder on the accumulation of heavy metal

in paddy soil should be further investigated in future

research.

5 Conclusions

Our research is the first regulation practice of the phytolith

carbon sink through external silicon amendments. BP

amendment significantly increased the contents of phytolith

and the C content of phytoliths in rice ecosystems. The

PhytOC production fluxes in organs increased significantly

with BP amendment from 0.005 to 0.041 Mg CO2 ha-1 a-1.

The PhytOC production flux of the sheaths was generally

higher than that in other organs because of higher PhytOC

content. The PhytOC content of organs depends on both the

phytolith content and the ability of C occlusion within phy-

toliths during plant growth. If the global rice with a planting

area of about 1.55 9 108 ha had a similar PhytOC production

flux in this study, 0.61 9 107 to 1.54 9 107 Mg CO2 could

be occluded annually within phytoliths of global rice eco-

systems, being equivalent to 0.02 %–0.05 % of the global

CO2 emissions (30,100 9 106 Mg) in 2007. Furthermore,

BP amendment resulted in a 150 % increase of PhytOC

production flux (CK-0 to CK-4: 0.04–0.10 Mg CO2 ha-1 a-1).

This means that if silicon fertilizer can be efficiently applied

to cereals such as rice in the future, atmospheric CO2 emis-

sion may be mitigated through increasing phytolith carbon

sink in agricultural ecosystems. Thus, our findings highlight

that the use of external silicon amendments such as BP

amendment provides a novel land management tool to reg-

ulate long-term biogeochemical carbon sequestration in crop

ecosystems and may contribute to mitigate global climate

warming.
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