文章编号: 1000-4734(2015)03-0299-10

新疆阿尔泰可可托海 3 号伟晶岩脉岩浆-热液 过程:来自电气石化学组成演化的证据

伍守荣¹,赵景宇^{2,3},张新¹,张辉^{2*}

(1. 贵州省有色金属和核工业地质勘查局七总队,贵州 贵阳 550005;2. 中国科学院 地球化学研究所 地球内部物质高温高压院重点实验室,贵州 贵阳 550081;3. 中国科学院大学,北京 100049)

摘要:新疆阿尔泰可可托海3号脉不同结构带及其蚀变围岩中电气石化学组成电子探针(EMPA)分析结果显示, 蚀变围岩、外接触带和内接触带中电气石为是富钙-铁的镁电气石, 电气石化伟晶岩中电气石为富镁-铁的锂电气石, 伟晶岩早期结构带(I-IV带)中电气石为黑电气石-锂电气石系列, 而伟晶岩晚期结构带(V-UI带)中电气石为锂电气石。蚀变围岩、外接触带和内接触带中电气石以Y位中低Al, 高Mg、Ca以及显著低的Al/(Al+Fe)、Fe/(Fe+Mg)比值为特征, 主要存在 R³⁺+O²=R²⁺+OH的置换; 伟晶岩内部结构带(I-UI带)中电气石以Y位上极低 Mg、Ca, 高Fe、Al、Li 以及显著高的Al/(Al+Fe)、Fe/(Fe+Mg)比值为特征, 主要存在□+Al³⁺=Na⁺+Fe(Mg)²⁺和Li⁺+Al³⁺=Fe(Mn)²⁺+Mg²⁺的置换。蚀变围岩、外接触带和内接触带中电气石化学组成特征指示存在围岩-流体、围岩-熔体相之间的相互作用。伟晶岩早期结构带(I-IV带)中电气石无明显组成分带,为岩浆成因;晚期结构带(V-UI带)中电气石显示振荡环带,形成于岩浆-热液过渡阶段体系。随着伟晶岩由外向里固结,温度逐渐降低, 伟晶岩内部结构带中电气石显示 Y 位上 Al、Li、Mn 及 Fe/(Fe+Mg)比值逐渐增大的演化趋势; 内部结构带中电气石几乎不含 Mg, 指示3号伟晶岩脉岩浆-热液演化是在相对封闭体系中进行的。 **关键词:** 化学组成; 岩浆-热液演化; 电气石; 可可托海3 号脉

中图分类号: P581 **文献标识码:** A **doi:** 10.16461/j.cnki.1000-4734.2015.03.004 **作者简介:** 伍守荣,男, 1964 年生,高级工程师,地质矿产勘查专业. E-mail: gzwshr@sina.com

Magmatic-Hydrothermal Evolution of the Koktokay No.3 Pegmatite, Altay, NW China: Evidence from Compositional Variation of Tourmaline

WU Shou-rong¹, ZHAO Jing-yu^{2,3}, ZHANG Xin¹, ZHANG Hui²

 (1. General Team No.7 of Non-ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou, Guiyang 550005, China;
 2. Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Chemical compositions of tourmalines, determined by electron microprobe, show that tourmalines from the altered country-rock, exo- and internal-contact zones are Ca- and Fe-rich dravite, from the tourmalized pegmatite are Mg- and Fe-rich elbaite, from the early formed textural zones (I - IV) are schorl-elbaite solid solution series, and from the late formed textural zones (V - VII) are elbaite. Tourmalines from the altered country-rock, exo- and internal- contact zones are characterized by low Al, high Mg and Ca in Y site, and very low ratios of Al/(Al+Fe) and Fe/(Fe+Mg), represented by substitution of $R^{3+}+O^{2-}=R^{2+}+OH^{-}$, indicating that the origin of tourmalines were associated with interactions between country-rock and pegmatite-forming melt.

收稿日期: 2014-12-23 **基金项目**: 国家自然科学基金项目(批准号: 41372104);新疆有色金属工业(集团)有限责任公司科研项目(批准号: 2011YSKY-02) Tournalines from the internal textural zones (I - VII) of pegmatite are featured by very low Mg and Ca, high Fe, Al and Li in Y site, and very high ratios of Al/(Al+Fe) and Fe/(Fe+Mg), represented by substitution of $\Box + AI^{3+} = Na^+ + Fe(Mg)^{2+}$ and $Li^+ + AI^{3+} = Fe(Mn)^{2+} + Mg^{2+}$, respectively. Touramlines from the early formed textural zones (I - IV) of pegmatite are magmatic in origin, showing no zonation in chemical compositions, but tournalines from the late formed textural zones (V - VII) of pegmatite were magmatic-hydrothermal in origin, featured by oscillatory zonation. As solidification of pegmatite from the outer to the inner, it shows that Al, Li and Mn in Y site and Fe/(Fe+Mg) ratio of tournalines increase with decreasing temperature gradually. As no Mg in Y site of tournalines from the internal textural zones, it indicates that the magmatic-hydrothermal evolution of Koktokay No.3 pegmatite proceeded in a relatively closed system. **Keywords:** chemical composition; magmatic-hydrothermal evolution; tournaline; Koktokay No.3 pegmatite

电气石广泛分布于岩浆岩、沉积岩、变质岩和 热液矿床中。电气石矿物具有极其复杂的组成和晶 体结构,自然界存在的电气石通常处于两端元电气 石间的中间产物,即黑电气石-镁电气石连续固溶体 系列、黑电气石-锂电气石连续固溶体系列以及存在 镁电气石与锂电气石之间的部分混溶。因此,电气 石结构中存在广泛的类质同象置换^[1-6]。由于电气石 在很宽的压力-温度范围内稳定存在,可稳定存留直 到变质深熔作用的发生,并具很强的抗风化能力, 因此,电气石中的微量元素组成可真实记录其形成 环境的 *p-t-x-f*₀₂条件、岩浆-热液体系的演化过程及 其 Cu、Mo、Au、W、Sn 的成矿作用过程^[4,7-20]。

电气石是可可托海 3 号伟晶岩脉中普遍存在的 副矿物,在岩钟体部分的 I ~ UII结构带、蚀变围岩 及内、外接触带中均有产出。尽管 Zhang et al.^[19-20] 开展了对可可托海 3 号脉蚀变围岩、接触带和伟晶 岩内部结构带中电气石化学组成及其红外光谱、穆 斯堡尔谱的研究,对其岩浆-热液演化过程取得了重 要的认识,但他们的研究未能包括 3 号脉糖粒状钠 长石带(II带)、白云母-薄片状钠长石带(UI带) 以及内接触带、电气石化伟晶岩中电气石。本次我 们系统采集了与可可托海 3 号脉岩钟体部分相关的 蚀变围岩、外接触带、内接触带、电气石化伟晶岩 以及伟晶岩内部结构带(I~UI)中电气石,通过 对不同产状电气石化学组成特征研究,系统、全面 地揭示 3 号伟晶岩脉岩浆-热液的演化过程。

1 矿区地质特征

可可托海矿床位于可可托海花岗伟晶岩田西南 边缘的突出部位,面积约 9 km²,含矿花岗伟晶岩 脉集中于变辉长岩体中。矿区出露地层主要为一套 含十字石的黑云母斜长石-石英片岩、含红柱石的黑 云母-石英片岩和石英-黑云母片岩等变质岩块(哈 巴河群)。基性岩体集中分布于区内的中西部,东部

以斜长角闪岩为主,西部以变辉长岩为主。片麻状 黑云母花岗岩在区内广泛分布,在片麻状黑云母花 岗岩边缘和内部零星分布有花岗闪长岩(图1)。阿 尔泰 3 号伟晶岩脉位于新疆富蕴县城北东约 35 km 处的可可托海镇(故又称可可托海3号伟晶岩脉), 北依额尔齐斯河,东离蒙古边境约 60 km,地理坐 标 N47°12′29.8″、E89°48′59.5″。可可托海 3 号伟晶 岩脉侵入于变辉长岩中(图1),而变辉长岩又位于 片麻状黑云母花岗岩中^[21-22]。与一般呈透镜状产出 伟晶岩脉不同,可可托海3号伟晶岩脉形态复杂, 整个伟晶岩脉形似一顶实心草帽,主要由上部陡倾 斜的筒状岩钟体和下部缓倾斜两部分组成。岩钟呈 椭圆柱状,从地表向下,深度大于250 m。在地表 平面图上,呈椭圆形,走向 NW335°,长约 250 m, 宽约 250 m,倾向 NE,上盘倾角 40°~60°,下盘倾 角 80°~90°,即自上而下有逐渐变大的趋势。缓倾 斜脉状体见于地下 200~500 m 处, 走向 NW310°, 倾向 SW,沿走向长 2160 m,沿倾向延伸 1660 m, 厚 20~60 m, 平均 40 m, 倾角 10°~25° [23]。

3 号伟晶岩脉是我国乃至世界范围内分异最完善的 LCT 型伟晶岩,根据岩石结构特征和特定的矿物共生组合,从脉体边部到核部带可把伟晶岩脉划

分出九个结构带(不包括伟晶岩脉的冷凝边带和梳 状结构带),构成近同心环带状构造(图 2)。从 外向里依次为: 文象变文象伟晶岩带(I带)、糖 粒状钠长石带(Ⅱ带)、块体微斜长石带(Ⅲ带)、 白云母-石英带(Ⅳ带)、叶钠长石-锂辉石带(V 带)、石英-锂辉石带(II带)、白云母-薄片状钠 长石带(WI带)、锂云母-薄片状钠长石带(WI带)、 核部块体微斜长石带和石英带(IX1和IX2)。缓倾 斜部分矿物共生组合相对比较简单,由顶部的文象 变文象伟晶岩带、中部的糖粒状钠长石带和底部的 细粒伟晶岩带组成,各个结构带在脉的上盘和下盘 呈不对称形式排列。在脉体膨大部分可划分出七个 结构带,分别为:文象变文象伟晶岩带(I带)、 块体微斜长石带(II带)、白云母-石英带(III带)、 糖粒状钠长石带(Ⅳ带)、叶钠长石-石英-锂辉石 带(V带)、钠长石-锂云母带(VI带)和细粒伟晶 岩带(Ⅲ带)。

2 样品采集与分析

本次研究系统采集了伟晶岩内部结构带(I~ WI带)、内接触带(由冷凝边带向内的梳妆结构带)、 外接触带(冷凝边带)和蚀变围岩中的电气石矿物 以及出露于脉体西侧,局部分布于冷凝边带内侧的 电气石化伟晶岩中的电气石。表1中列出了研究样 品的地质产状及相应的矿物共生组合。

1-围岩斜长角闪岩; 2-文象变文象伟晶岩带; 3-糖粒状钠长石带; 4-块 体微斜长石带; 5-石英-白云母带; 6-叶钠长石-锂辉石带; 7-石英-锂辉 石带; 8-白云母-薄片钠长石带; 9-块体石英核; 10-块体微斜长石核

图 2 可可托海 3 号伟晶岩脉 1186 m 水平内部 分带平面图 (据文献[24])

Fig. 2. Cross-section of the internal textural zonation of Koktokay No.3 pegmatite, Altay at an elevation of 1186 m.

Table 1. Occurrence and paragenesis of tournamics from unrefer zones of Koktokay 10.5 pegmate							
结构带	样品号	颜色	单晶大小 (mm×mm)	形态	矿物共生组合		
蚀变围岩	Kp03-431, DQS11-60, DQS-11-61, DQS11-63	黑色	1~3×5~10	柱状	角闪石、斜长石		
外接触带	Kp03-432	黑色	0.5~0.6×1~3	柱状	角闪石、斜长石		
内接触带	Kp03-424	黑色	0.5~0.8×2~3	柱状	石英、微斜长石、白云母		
电气石化伟晶岩	Kp03-307	黑色	1~2×2~4	短柱状或粒状	钠长石、白云母、石英		
I 带	Kp03-147, Kp03-412, Kp03-413, Kp03-430	黑色	0.5~2×5~10	柱状	微斜长石		
II 带	Кр03-16	黑色	0.5~1×5~6	柱状	糖粒状钠长石、白云母、绿柱 石		
Ⅲ带	Кр03-414, Кр03-415	黑色	0.5~1×4~5	柱状	微斜长石		
IV带	Kp03-15, Kp03-16, Kp03-155, Kp03-200, Kp03-416, Kp03-417	黑色	10~20×30~60	柱状	石英、白云母、钠长石、绿柱 石		
V 带	Kp03-167, Kp03-168, Kp03-418, Kp03-419	玫瑰红色	5~6×30~40	柱状	叶钠长石、石英、白云母		
Ⅵ帯	Kp03-101,Kp03-165,Kp03-420, Kp03-421, Kp03-422	粉红色或 淡蓝色	3~4×20~25	柱状	石英、叶钠长石、白云母		
VII带	Кр03-87	淡蓝色或 浅绿色	1~2×2~3	短柱状或粒状	薄片状钠长石、含锂白云母		

表1 可可托海3号伟晶岩脉不同结构带中电气石产状及矿物共生组合 Table 1. Occurrence and paragenesis of tournalines from different zones of Koktokay No.3 pagmatie

电气石化学成分测定是在南京大学成矿作用国 家重点实验室 JXA8800M 型电子探针仪上完成的, 采用波长色散 X 射线光谱法(WDS)。选择工作条 件为:加速电压 15 kV,电流 10 nA,束径 5 µm。 以 Durango apatite(w(Cl)=0.41%,w(F)=3.53%)为 标样测定电气石中 F、Cl 质量分数,以钙长石玻璃 (Anorthite glass,w(Al₂O₃)=36.65%)为标样测定电 气石中 Al₂O₃,ZnO、Cs₂O 分别采用 Willemite (w(ZnO)=73.05%)和合成的 CsReCl₆(w(Cs₂O)= 39.99%)化合物标样进行测定,其它氧化物 SiO₂、 FeO、MgO、Na₂O、K₂O、TiO₂、BaO、SrO 和 MnO 等的测定分别选用角闪石 (Hornblende Kakanui)、 钾长石、铌酸锶钡和铁橄榄石基质(Fayalite Rockport Mass)作为标样。挥发分 F、Cl 质量分数 和 Cs₂O、SrO 特征峰的测定时间设定为 20 s,其它 元素氧化物特征峰的测定时间设定为 10 s,相应的 所有氧化物背景测定时间设定为 5 s。所有的分析结 果进行 ZAF 修正^[25]。

电气石结构式为 XY₃Z₆(BO₃)₃Si₆O₁₈W₄, 假定电 气石单位结构式中 n(B)=3, n(OH+F+Cl)=4.00 和 n(Li)=3-ΣY (ΣY: Y 位阳离子数总和),基于 31 阴离 子数 (O, OH, F)进行电气石结构式计算。本次研 究对采自3号伟晶岩脉及蚀变围岩中的 30 个电气石 样品进行大量电子探针测试 (测点数共计 188 个), 表 2 列出不同结构带中电气石样品的化学组成变化 范围以及基于单位结构中 31 个氧进行电气石结构 式计算结果。由于分析结果显示, w(Cl)<0.02%、 w(Cs₂O)<0.01%、w(SrO)<0.01%、w(BaO)<0.2%,因 此这几项未参与电气石结构式的计算。

表2 可可托海3	号脉不同结构带中国	9 年 石 化 学 组 成 /	及计算的矿物结构式
- 12 # -1 -1 IUH J	, 1 MW 1 1 1 MU 1 1 1		<u> </u>

Table 2. Chemical composition and calculated structural formula of tourmalines from different different composition and calculated structural formula of tourmalines from different differ	ferent
textural zones of Koktokay No 3 pegmatite	

结构带		蚀变围岩	外接触带	内接触带	电气石化伟晶岩	I 带
		(<i>n</i> =16)	$(n=8)^5$	(<i>n</i> =5)	(<i>n</i> =12)	(<i>n</i> =26)
SiC	D ₂	35.21~37.10	35.33~35.96	34.98~36.08	34.77~36.13	33.76~35.98
TiC	D ₂	0.00~1.52	0.00~0.03	0.18~0.24	0.00~0.10	0.00~0.16
Al ₂	D ₃	30.77~33.35	29.69~32.53	32.48~33.44	34.70~36.60	34.04~37.77
FeO ¹		4.22~8.23	4.57~6.57	6.18~6.92	7.26~9.09	5.77~13.32
Mn	0	0.00~0.11	0.00~0.09	0.01~0.05	0.34~0.59	0.41~1.20
Mg	0	6.98~9.82	9.42~10.90	7.97~8.37	1.42~1.79	0.11~1.62
Zn	0	0.00~0.19	0.00~0.22	0.00~0.05	0.30~0.86	0.15~0.94
Na ₂	0	1.60~2.12	1.46~1.75	1.37~1.48	2.11~2.60	1.54~2.64
K_2	С	0.00~0.04	0.00~0.02	0.0~0.02	0.02~0.04	0.00~0.06
Ca	С	0.77~1.83	1.24~2.08	1.06~1.40	0.08~0.15	0.01~0.29
F		0.00~0.97	0.00~1.33	0.00~0.50	0.57~1.34	0.04~1.46
B_2O	93 ²	10.50~10.88	10.44~10.66	10.65~10.74	10.39~10.70	10.19~10.65
Li ₂ C	O^2	0.22~0.25	0.00	0.00	0.57~0.93	0.00~1.17
H_2O^2		3.25~3.75	3.01~3.67	3.44~3.67	2.96~3.36	2.93~3.49
-O=F		-0.41~0.00	-0.56~0.00	-0.21~0.00	-0.57~-0.24	-0.62~-0.02
总量	<u></u> 王	99.10~102.48	98.30~100.61	100.65~101.07	98.20~100.93	98.68~101.92
m /b	Si	5.83~5.95	5.81~5.94	5.70~5.87	5.75~5.93	5.74~5.93
T 位 7 位	Al	0.05~0.16	0.06~0.19	0.13~0.30	0.07~0.25	0.07~0.26
	Al	5.78~6.00	5.60~6.00	6.00	6.00	6.00
乙世	Fe	0.00~0.22	0.00~0.40	0.00	0.00	0.00
	Al	0.00~0.26	0.00~0.18	0.11~0.21	0.74~0.87	0.56~1.13
	Ti	0.00~0.19	0.00	0.02~0.03	0.00~0.01	0.00~0.02
	Fe	0.56~0.95	0.49~0.70	0.84~0.94	1.01~1.27	0.79~1.89
Y 位	Mn	0.00~0.01	0.00~0.01	0.00~0.01	0.05~0.08	0.06~0.17
	Mg	1.69~2.42	2.29~2.50	1.94~2.03	0.35~0.44	0.03~0.40
	Zn	0.00~0.02	0.00~0.03	0.00~0.01	0.04~0.11	0.02~0.11
	Li	0.14~0.23	0.00	0.00	0.38~0.61	0.00~0.78
	Na	0.57~0.66	0.47~0.56	0.43~0.47	0.69~0.82	0.51~0.84
X 位	Ca	0.13~0.32	0.22~0.37	0.18~0.24	0.01~0.03	0.00~0.05
	\square^3	0.08~0.23	0.13~0.30	0.29~0.38	0.16~0.29	0.14~0.48
wa	OH	3.52~4.00	3.31~4.00	3.74~4.00	3.29~3.70	3.23~3.97
VV 112	F	0.00~0.48	0.00~0.69	0.00~0.26	0.30~0.71	0.02~0.76
Al/(Al-	+Fe) ⁴	0.00~0.31	0.00~0.20	0.11~0.20	0.37~0.47	0.23~0.58
Fe/(Fe+	$-Mg)^4$	0.21~0.40	0.20~0.25	0.30~0.33	0.73~0.77	0.82~0.98

佛主っ

(尖衣 4							
结	构带	II 带(n=6)	III带(n=16)	IV带(n=19)	V带(n=31)	VI带(n=28)	VII带(n=21)
S	iO ₂	36.06~37.09	34.68~35.86	35.56~36.97	35.71~38.00	34.61~38.31	36.89~38.87
Т	iO ₂	0.00~0.01	0.06~0.18	0.00~0.16	0.00~0.12	0.00~0.08	0.01~0.05
Al	$_2O_3$	38.82~39.70	34.98~36.67	34.60~39.67	36.37~42.38	35.95~42.00	37.83~39.76
Fe	eO^1	2.46~3.18	7.74~10.92	3.33~10.12	0.21~6.55	1.00~8.99	1.02~3.03
Μ	nO	2.38~2.75	0.23~0.44	0.19~1.47	0.53~1.91	0.39~1.81	1.80~2.59
Μ	gO	0.00	0.30~0.43	0.00~0.45	0.00~0.05	0.00~0.23	0.00~0.03
Z	nO	0.03~0.46	0.00~0.73	0.05~1.13	0.00~0.79	0.00~0.62	0.08~1.07
N	a ₂ O	2.05~2.38	2.15~2.53	2.14~2.72	1.71~2.67	1.65~2.62	2.07~2.63
K	20	0.00~0.03	0.00~0.04	0.01~0.06	0.00~0.05	0.00~0.04	0.00~0.04
С	aO	0.48~0.61	0.03~0.12	0.05~0.27	0.10~0.58	0.02~0.64	0.15~0.33
	F	0.79~1.34	0.58~1.49	0.44~1.73	0.51~1.44	0.45~1.63	0.08~0.27
B_2	O_3^2	10.74~10.99	10.31~10.64	10.35~10.91	10.51~11.14	10.41~11.09	10.73~11.06
Li	${}_{2}O^{2}$	1.44~1.59	$0.70 \sim 1.08$	0.81~1.51	1.25~1.92	0.95~2.13	1.61~1.88
Н	$_{2}O^{2}$	3.13~3.38	2.94~3.36	2.83~3.48	2.97~3.53	2.82~3.50	3.63~3.75
-0	D=F	-0.56~-0.33	-0.63~-0.24	-0.73~-0.18	-0.61~-0.22	-0.69~-0.19	-0.11~-0.03
总	量	99.59~101.80	98.30~101.66	98.28~101.74	98.41~101.50	97.95~101.42	99.18~101.01
T位	Si	5.83~5.92	5.77~5.94	5.82~5.99	5.77~6.00	5.71~6.00	5.94~6.00
	Al	0.08~0.17	0.06~0.23	0.01~0.18	0.00~0.23	0.00~0.29	0.00~0.06
Z位	Al	6.00	6.00	6.00	6.00	6.00	6.00
	Fe	0.00	0.00	0.00	0.00	0.00	0.00
Y位	Al	1.22~1.25	0.80~0.99	0.81~1.27	0.98~1.69	0.94~1.67	1.09~1.39
	Ti	0.00	0.01~0.02	0.00~0.02	0.00~0.01	0.00~0.01	0.00
	Fe	0.33~0.43	1.08~1.49	0.44~1.40	0.03~0.88	0.00~1.22	0.13~0.40
	Mn	0.32~0.37	0.03~0.06	0.03~0.20	0.07~0.27	0.05~0.25	0.24~0.35
	Mg	0.00	0.07~0.11	0.00~0.11	0.00~0.01	0.00~0.06	0.00~0.01
	Zn	0.00~0.06	0.00~0.09	0.01~0.13	0.00~0.09	0.00~0.07	0.01~0.13
	Li	0.94~1.02	0.47~0.72	0.55~0.97	0.81~1.24	0.62~1.34	1.04~1.19
X位	Na	0.64~0.74	0.70~0.82	0.70~0.86	0.52~0.84	0 50~0 84	0.64~0.81
1	Ca	0.08~0.10	0.00~0.02	0.01~0.05	0.02~0.10	0.00~0.11	0.03~0.06
	\square^3	0.16~0.25	0.17~0.27	0.08~0.28	0.12~0.40	0.14~0.40	0.14~0.31
w厽	OH	3 33-3 60	3 22-3 70	3 10-3 78	3 28-3 74	3 14-3 76	3 86-3 96
чч - <u>ри</u> .	E	0.40.0.67	0.30, 0.77	0.22.0.00	0.26-0.72	0.22 0.94	0.04 0.14
A 1 // A	Г 1 (Ба) ⁴	0.40~0.07	0.30~0.77	0.22~0.90	0.20~0.72	0.43 1.00	0.04~0.14
$AI/(AI+Fe)^{4}$		0.74~0.79	0.36~0.48	0.3/~0./4	0.53~0.98	0.43~1.00	0.74~0.91
Fe/(Fe+Mg) ⁴		1.00	0.92~0.94	0.89~1.00	0.80~1.00	0.95~1.00	0.98~1.00

注: 1-总铁; 2-B₂O₃; Li₂O, H₂O 质量分数是根据 31 阴离子数进行电气石结构式计算获得, 假定 n(B)=3, Li=3-∑Y, n(OH+F+Cl)=4; 3-空穴; 4-Y 位上 Al, Fe, Mg; 5-括号中为测点.

3 电气石化学组成、类型及主要置换 反应

电气石是一种复杂的硼硅酸盐矿物,其结构式 XY₃Z₆(BO₃)₃Si₆O₁₈W₄ 或 (R1)(R2)₃(R3)₆(BO₃)₃Si₆ O₁₈(OH,F)₄。在电气石结构中,X 位较大且是 9 配 位的,通常由离子半径较大的 Na 或 Ca 占据,即 X (R1)=Na、Ca、(K)或□ (空位);存在 2 个 6 配位的 八面体位 Y 和 Z,其中 Y 位倾向于接纳较大的 2 价 阳离子,即 Y (R2)=Fe²⁺、Mg、Mn²⁺、Fe³⁺、Al 或 Li;而 Z 位则倾向接纳离子半径较小的 3 价阳离子, 即 Z (R3)=Al、Fe³⁺、Mg 或 Ti^{4+[1-2,6]}。

3.1 电气石化学组成、类型

(1) 蚀变围岩、外接触带中电气石: 蚀变围岩 中电气石显示简单分带,在 BSE 成图中包含相对暗

色的幔与浅色核(图 3a)。在电气石单位结构的 Fe-Mg 图解中(图4),应为镁电气石。来自蚀变围 岩、外接触带的电气石在 Y 位上含有较高质量分数 的 Mg(1.69~2.50)、中等程度的 Fe (0.49~0.95)、 低的 Al (0.00~0.26), 在 X 位上含有较高的 Ca (0.13%~0.37%), W 位上含有较低的 F (0.00~ 0.69%)为特征,并显示很低的 Al/(Al+Fe)、Fe/(Fe+ Mg)比值(变化于0.00~0.31、0.21~0.40范围)(表 2),因此,在成分上应是富钙-铁的镁电气石。蚀变 围岩中电气石在 Y 位上含有一定量的 Li (0.14~ 0.23 apfu)而区别于外接触带中电气石中不含 Li(表 2)。在 Al-Fe(tot)-Mg 三角图解中, 蚀变围岩和外接 触带中的电气石主要投在富 Fe³⁺石英-电气石岩区 (图 5)。在 Na/(Na+□)-Al/(Al+Fe)图解中,外接触 带的电气石投在黑电气石区域(图6),未见碱严重 不足的 foitite (福伊特石)。

Dra-镁电气石; Elb-锂电气石; Chl-绿泥石

图 3 电气石 BSE 成像 (A) 蚀变围岩中镁电气石, (B) V带中锂电气石 Fig. 3. Backscattered electron images for (A) dravite from the altered country rock, and (B) elbaite from zone V.

带中电气石的 Fe-Mg 图解

图解以电气石单位结构式中 Al, Fe, Mg 原子数比例绘制而成, 其 中 Fe(tot)代表总铁; 8 个区域; 1-富 Li 的花岗伟晶岩和细晶岩, 2-贫 Li 的花岗岩类以及相关的伟晶岩和细晶岩, 3-富 Fe3+的石英-电气 石岩石(热液蚀变花岗岩), 4-与一 Al 饱和相共存的变泥质岩和变砂 屑岩, 5-不含 Al 饱和相的变泥质岩和变砂屑岩, 6-富 Fe³⁺石英-电气 石岩石、钙硅酸盐以及变泥质岩, 7-低 Ca 的变超镁铁质岩以及富 Cr、 V 的变沉积岩, 8-变碳酸盐岩和变辉石 (Henry 和 Guidotti, 1985).

图 5 可可托海 3 号伟晶岩脉不同产状电气石的 Al-Fe(tot)-Mg 三角图解

Fig. 5. Al-Fe(tot)-Mg ternary diagram (in molar proportions) for tourmalines from the different textural zones of Koktokay No.3 pegmatite.

图 6 可可托海 3 号伟晶岩脉不同结构带中电气石的 Al/(Al+Fe)--Na/(Na+□)图解 (符号同图 4)

Fig.6. Al/(Al+Fe) vs. Na/(Na+□) diagram for tournalines from different textural zones of Koktokay No.3 pegmatite.

(2)内接触带中电气石:在电气石单位结构的 Fe-Mg 图解中,内接触带中电气石投在镁电气石范 围(图4)。该带的电气石在Y位上含有较高质量分 数的 Mg(1.94~2.03)、中等程度的 Fe(0.84~0.94)、 低的 Al (0.11~0.21),在 X 位上含有较高的 Ca (0.18~0.24),在W位上含有低的F(0.00~0.26) (表 2),在成分上应是富钙-铁的镁电气石。 Al/(Al+Fe)、Fe/(Fe+Mg)比值变化于 0.11~0.20、 0.30~0.33 范围,相似于蚀变围岩、外接触带中电 气石,但因其Z位上不含 Fe³⁺、Y位上不含 Li 而区 别于蚀变围岩和外接触带中电气石(表 2)。在 Al-Fe(tot)-Mg 三角图解中,内接触带中电气石投在 不含 Al 饱和相的变泥质岩和变砂屑岩区(图 5)。

(3) 电气石化伟晶岩中的电气石: 在 Na/(Na+□)-Al/(Al+Fe)图解中,电气石化伟晶岩中电气石为 锂电气石(图 6)。电气石显示在 Y 位上含有较低的 Mg (0.35~0.44)、中等程度的 Fe (1.01~1.27) 和 Al(0.74~0.87)以及相对较高的 Li(0.38~0.61), 在 X 位上含有极低的 Ca (0.01~0.03),在 W 位上 含有较高的 F (0.30~0.71), 其 Al/(Al+Fe)、 Fe/(Fe+Mg)比值变化于 0.37~0.47、0.73~0.77 (表 2),在成分上应为富镁-铁的锂电气石。电气石化伟 晶岩中的电气石化学以低的 Mg、Ca,相对高的 Fe、 Al 和 Li 以及显著高的 Al/(Al+Fe)、Fe/(Fe+Mg)比值 明显不同于蚀变围岩和内接触带中富钙-铁的镁电 气石,而以相对高的 Mg 区分于伟晶岩内部结构带 (I~II带)中的黑电气石-锂电气石系列(表 2); 数 据 点 没 有 落 在 Henry and Guidotti ^[8]提出 Al-Fe(tot)-Mg 三角图解中的目前已知的岩石类型中 电气石分类区域(图 5)。

(4) 伟晶岩早期结构带(I~IW带)中电气石: 在 Na/(Na+□)-Al/(Al+Fe)图解中, 伟晶岩早期结构 带中电气石为黑电气石-锂电气石系列(图 6)。 [带电气石显示其 Y 位上的 Mg、Fe、Mn、Al 和 Li 分别变化于 0.03~0.40、0.79~1.89、0.0~0.17、 0.57~1.13 和 0.00~0.78, X 位上 Ca 变化于 0.00~ 0.05 之间,W位上F变化于0.02~0.76之间,其 Al/(Al+Fe)和 Fe/(Fe+Mg)比值变化于 0.23~0.58 和 0.82~0.98, 其中部分电气石具有明显低 Al/(Al+Fe) (<0.30),为黑电气石;而明显高 Al/(Al+Fe) (> 0.30)的,则为锂电气石。III带与IV带中电气石显示 相似的化学组成, 其 Y 位上的 Mg、Fe、Mn、Al 和 Li 分别变化于 0.00~0.11、0.44~1.49、0.03~ 0.20、0.80~1.27 和 0.47~0.97, X 位上 Ca 变化于 0.00~0.05 之间, W 位上 F 变化于 0.22~0.90。 Al/(Al+Fe)和 Fe/(Fe+Mg)比值变化于 0.36~0.74 和 0.89~1.00,为富锰-铁的锂电气石(表 2)。在 Na/(Na+□)-Al/(Al+Fe)图解中,Ⅱ带电气石为锂电气 石(图6),但值得注意的是,它以Y位上无Mg, 高的 Mn、Li 质量分数(Mn, Li 质量分数分别变化 于 0.32~0.37 和 0.94~1.02)以及显著大的 Al/(Al+Fe)比值 (0.74~0.79)、Fe/(Fe+Mg)比值 (~ 1)为特征而区别于 I 带和III-IV带电气石, 而与伟 晶岩晚期结构带(V-Ⅲ带)中电气石化学组成相 似。在 Al-Fe(tot)-Mg 三角图解中,Ⅱ~Ⅳ带电气石 和大部分 I 带电气石分布于 1 区, 其组成与富 Li 花岗伟晶岩和细晶岩中电气石组成较一致,而少量 I带电气石分布在2区,与来自贫Li的花岗岩类及 其相关的伟晶岩和细晶岩中的电气石组成接近(图 5)。

(5) 伟晶岩晚期结构带(V~\II带)中电气石 来自V带电气石显示类似振荡环带的分带,在
BSE 成图中包含有暗色边与浅色核(图 3b)。V~
VI带中电气石显示其 Y 位上的 Mg、Fe、Mn、Al
和 Li 分别变化于 0.00~0.06、0.00~1.22、0.05~ 0.35、0.94~1.69 和 0.62~1.34 之间, X 位上 Ca 变 化于 0.00~0.11 之间, W 位上 F 变化于 0.04~0.86, 其 Al/(Al+Fe)和 Fe/(Fe+Mg)比值变化于 0.43~1.00、 0.80~1.00 之间(表 2),以极低 Mg、Ca,高 Al、 Li、Mn 以及显著高的 Al/(Al+Fe)和 Fe/(Fe+Mg)比值 为特征。在 Na/(Na+□)-Al/(Al+Fe)图解中,伟晶岩 脉晚期形成的结构带中电气石为锂电气石(图 6), 未见碱严重不足的 Rossmanite。在 Al-Fe(tot)-Mg 三 角图解中, V~UI带带电气石分布于1 区,与富 Li 花岗伟晶岩和细晶岩中电气石组成较一致(图 5)。

3.2 主要置换反应

在(R1+R2)-R3 相关性图解中, 蚀变围岩、外接 触带、内接触带和部分 I 带中电气石主要存在 R³⁺+O²⁻=R²⁺+OH 的置换(图 7), 其交换矢量为 [(R3)O][(R2)OH]₋₁; 电气石化伟晶岩和伟晶岩内部 结构带(I – Ⅲ带)中电气石主要存在□+AI³⁺= Na⁺+Fe(Mg)²⁺(图 7)和 Li⁺+AI³⁺=Fe(Mn)²⁺+Mg²⁺ (图 8)的置换,其交换矢量分别为 [□AI][Na(Fe, Mg)]₋₁和 LiAl(Fe,Mg)₋₂^[1-2,4]。

4 讨 论

4.1 伟晶岩岩浆-流体演化过程

已有研究表明,形成3号伟晶岩脉的初始阶段 岩浆中至少含有2.5%~3.2%的 B_2O_3 、5.4%~6.8% 的 P_2O_5 和0.3%~0.4%的F挥发分^[24]。依据熔体包 裹体、熔体-流体包裹体和流体包裹体研究^[23,26],3 号伟晶岩脉可划分出岩浆(I-IW带)、岩浆-热液 过渡(V-W带)和热液(IX带)3个阶段。I-

图 8 内部结构带中电气石 R2 位上 Al 与 R2^{*} (Fe+Mn+Mg+Al 阳离子数之和)的相关性图解 (符号同图 4)

Ⅳ带电气石在背散色电子成像(BSE)中未观察到 明显的组成分带,同一薄片中多个测点以及不同电 气石颗粒的EMPA分析结果显示化学组成变化于较 窄范围,且以高的 Fe/(Fe+Mg)比值、F 和过剩 Al 为特征,因此它们均是岩浆成因的;而晚期结构带 (V~Ⅲ带)的电气石中显示振荡环带(图 3b),

预示它们形成于富流体介质的环境^[4,17,19],即岩浆-热液过渡阶段体系,这与前人研究结果是一致的 [19-20,27]。从黑电气石到锂电气石是形成伟晶岩的熔 体-流体体系组成演化的结果, 过剩 Al 增大的过程 是温度的逐渐降低的过程,而电气石中 Fe/Mg 比值 则反应了伟晶岩的演化程度[4,9,12,16]。可可托海3号 伟晶岩内部带电气石中 Y 位上 Al、Al+Li 明显存在 随伟晶岩分异进行而逐渐增大的演化趋势: 过剩 Al 由早期结构带(I~Ⅳ带)中电气石的 0.57~1.27 增至晚期结构带(V~Ⅶ带)中电气石的 0.96~ 1.69; Y 位上的 Al+Li 则由早期结构带(I~IV带) 中电气石的 0.56~2.26 apfu 增至晚期结构带 (V~ Ⅲ带)中的 1.56~2.87。伟晶岩早期结构带(Ⅰ~ IV带)中电气石中 Fe/(Fe+Mg)变化于 0.82~1.00 范 围,相似于晚期结构带(V~M带)中电气石的 Fe/(Fe+Mg)比值 (0.80~1.00); 不难看出, 两相邻 结构带中电气石在过剩 Al、Al+Li 以及 Fe/(Fe+Mg) 比值上有较大程度的重叠,表明相邻结构带的演化 是渐变的。在 Fe/(Fe+Mg)-Al(Y) 图解中,除电气 石化伟晶岩、部分I带中及部分V带中电气石显示 降低的 Fe/(Fe+Mg)(在 0.73~0.85 之间)外(图 9), 其它内部结构带中电气石单位结构中几乎不含Mg, 其 Fe/(Fe+Mg)近乎等于 1, 指示 3 号伟晶岩脉是在 相对封闭体系中演化的,无外来流体的参与。

但II带和V带中电气石单位结构式中具有异常 高的过剩 Al、Al+Li 和 Fe/(Fe+Mg)比值,明显偏离 上述演化趋势,是什么因素制约II带和V带中电气 石化学组成特征?已有的研究揭示,电气石单位结 构中过剩 Al 的大小是熔体中 Al 活度的外在体现^[4], 岩浆中 B、F 和 P 组分的增加将增大熔体中 Si 的活 度,引起石英液相稳定场扩大,从而也扩展了含铝 相,如云母、电气石或黄玉的液相稳定场^[28]。可可 托海3号伟晶岩脉中糖粒状钠长石带(Ⅱ带)的形 成与体系富 P 引起的岩浆液相不混溶有关^[24],其中 Be、Mg、Ca 和 Fe 等优先进入富 P 熔体^[29],同时, Al-P 络合物的存在^[30]使富 P 熔体中 Al 的活度降低 而不能形成电气石;而大量亲石元素 Li、Al、B 和 F在富 Si 熔体中的富集, 使从富 Si 熔体中结晶的电 气石在 Y 位上基本不含 Mg、Ca, 低的 Fe 和高的 Al, Li.

图 9 可可托海 3 号伟晶岩脉不同结构带中电气石中 Y 位 上 Al 与 Fe/(Fe+Mg)比值相关性 (符号同图 4) Fig. 9. Correlation diagram between Al in Y site and Fe/(Fe+Mg) for tourmalines from different textural zones of Koktokay No.3 pegmatite.

形成 3 号伟晶岩脉的初始岩浆是 H₂O 不饱和 的,由于大量无水矿物的结晶,残余岩浆中挥发分 逐渐增大,石英-白云母带(IV带)的形成,标志着 岩浆经历了约 70%的分离结晶作用,岩浆进入以晶 体、熔体、流体 3 相共存为特征的岩浆-热液过渡阶 段体系;形成V带的晚期岩浆体系中挥发组分(F、 B、P和H₂O)极大富集,促使熔体解聚和过铝质熔 体中八面体位减少,变网元素 Na、K 和 Ca 逐渐分 配到出溶的含水流体相中^[31-32]。与此同时,熔体相 中 Si、Al、Mn 和 Li 活度增大,一方面导致含锂矿 物(锂电气石、锂辉石)、含锰矿物(锰铝榴石和铌 锰矿-钽锰矿)饱和结晶;另一方面也促使结晶的电 气石单位结构式中含有高的过剩 Al、Li 和 Mn,低 的 Na、K 和 Ca,导致电气石中空穴增加。

4.2 流体相出溶后的水-岩相互作用

稀有金属伟晶岩侵入到变火山岩或变沉积岩围 岩中,岩浆演化晚期分异出的富含稀有元素的流体 相与围岩发生水-岩相互作用,从而形成蚀变晕或分 散晕,以富集高度活动的碱质元素(Li、Rb和Cs)、 挥发组分(H₂O、B和F)为特征。对于可可托海3 号伟晶岩脉,岩浆流体相出溶发生于V带固结过程 中[19-20, 33-34]。蚀变围岩、接触带中电气石为富钙-铁 的镁电气石,但蚀变围岩中电气石在Y位上含有一 定量的 Li (0.14~0.23) 而区别于不含 Li 的内、外 接触带中电气石,因此,蚀变围岩中电气石化学组 成特征揭示,出溶的岩浆流体相扩散进入围岩过程 中,与围岩斜长角闪岩中存在的变质流体或大气降 水混合所致^[36-37],其中变质流体或以大气降水为主 的外来流体在向下渗滤过程中携带 Mg、Fe 和 Ca 组分,而岩浆出溶的流体相提供了形成电气石所需 的 B、F、Al 和 Li 组分。而对于内、外接触带中电 气石化学组成特征,很可能是在可可托海3号伟晶 岩脉岩浆侵入围岩斜长角闪岩中,由于沿着它们的 接触带对围岩组分是开放的,围岩中 Mg、Fe 和 Ca 组分或通过围岩中流体扩散或原生流体渗滤方式进 入富 B 贫 Fe、Mg 和 Ca 的伟晶岩的熔体中^[4,11,37], 其中外接触带比内接触带中电气石单位结构式中更 富集 Mg、Ca 意味着更多围岩组分的加入。

电气石化伟晶岩中的电气石在成分上应为富镁--铁的锂电气石,以相对低的 Mg、Ca,相对高的 Fe、Al 和 Li 以及显著高的 Al(Al+Fe)、Fe/(Fe+Mg)比值 明显不同于蚀变围岩、内外接触带中富钙-铁的镁电 气石,与部分 I 带中 Al/(Al+Fe)>0.30 的锂电气石化 学组成接近。电气石化伟晶岩尽管保留中粗粒花岗 结构,但遭受强烈热液蚀变;电气石化伟晶岩中电 气石显示高 Li 特征指示其成因与伟晶岩演化晚期 出溶的岩浆流体对早期固结伟晶岩交代作用有关。

5 结 论

(1) 伟晶岩内部结构带(I~M带)中电气石 为黑电气石-锂电气石固溶体系列,以Y位上极低 Mg、Ca,高Fe、Al和Li以及显著高的Al/(Al+Fe)、 Fe/(Fe+Mg)比值为特征;蚀变围岩、外接触带和内 接触带中电气石为富钙-铁的镁电气石,以Y位中 低Al,高Mg、Ca以及显著低的Al/(Al+Fe)、 Fe/(Fe+Mg)比值为特征。电气石化学组成上的差异 反映其物源、物理化学条件上的差异。蚀变围岩、 外接触带和内接触带中电气石的成因与围岩-岩浆 流体、围岩-伟晶岩熔体之间的相互作用有关;伟晶 岩早期结构带(I-IV带)中电气石为岩浆成因, 而晚期结构带(V-M带)中电气石形成于岩浆-热 液过渡阶段体系。

(2)随着伟晶岩由外向里固结,温度逐渐降低, 伟晶岩内部结构带中电气石显示 Y 位上 Al、Li 和 Mn 及 Fe/(Fe+Mg)比值逐渐增大的演化趋势;内部 结构带中电气石几乎不含 Mg,指示可可托海 3 号 伟晶岩脉岩浆-热液演化是在相对封闭体系中进行 的。

(3)II带和V带中电气石单位结构式中具有异 常高的过剩 Al、Al+Li和 Fe/(Fe+Mg)比值,明显偏 离正常岩浆演化序列;前者与富磷引起的岩浆液态 不混溶有关,因 Be、Mg、Ca和 Fe等优先分配进 入富 P熔体,而 Li、Al、B和 F 在富 Si熔体中的富 集,导致从富 Si熔体中结晶的电气石以 Y 位上以 不含 Mg、Ca,低的 Fe和高的 Al、Li为特征;后 者与岩浆-热液过渡阶段体系有关,由于挥发组分 (F、B、P和 H₂O)极大富集,促使熔体解聚,有 利于变网元素 Na、K和 Ca分配到出溶的岩浆流体 相中,熔体相中 Si、Al、Mn和 Li活度增大,促使 结晶的电气石以 Y 位上含有高的 Al、Li和 Mn,X 位上低的 Na、K和 Ca为特征。

参考文献:

- [1] Rosenberg P E, Foit F F Jr. Synthesis and characterization of alkali-free tourmaline [J]. Am Mineral, 1979, 64: 180-186.
- [2] Burt D M. Vector representation of tourmaline compositions [J]. Am Mineral, 1989, 74: 826-839.
- [3] Burns P C, MacDonald D J, Hawthorne F C. The crystal chemistry of manganese-bearing elbaite [J]. Can Mineral, 1994, 32: 31-41.
- [4] London D, Manning D A C. Chemical variation and significance of tourmaline from Southwest England [J]. Econ Geol, 1995, 90: 495-519.
- [5] Novak M, Selway J B, Cerny P, Hawthorne F C, Ottolini L. Tourmaline of the elbaite-dravite series from an elbaite-subtype pegmatite at Blizna, southern Bohemia, Czech Republic [J]. Eur J Mineral, 1999, 11: 557-568.
- [6] Hawthorne F C, Henry D J. Classification of the minerals of the tourmaline group [J]. Eur J Mineral, 1999, 11: 201-215.
- [7] Sillitoe R H, Sawkins F J. Geologic, mineralogic and fluid inclusion studies relationing to the origin of copper-bearing tourmaline breccia pipes, Chile [J]. Econ Geol, 1971, 66: 1028-1041.
- [8] Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine [J]. Am Mineral, 1985, 70: 1-15.

[9] Jolliff B L, Papike J J, Shearer C K. Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota [J]. Am

308

- [10] Morgan G B, London D. Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tournaline stability and partial melting in mafic rocks [J]. Contrib Mineral Petrol, 1989, 102: 281-297.
- [11] Cavarretta G, Puxeddu M. Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello Geothermal Field, Italy [J]. Econ Geol, 1990, 85: 1236-1251.
- [12] Roda E, Pesquera A, Velasco F. Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain [J]. Can Mineral, 1995, 33: 835-848.
- [13] Federico M, Andreozzi G B, Lucchesi S, Graziani G. Compositional variation of tourmaline in the granitic pegmatite dykes of the Cruzeiro mine, Minas Gerais, Brazil [J]. Can Mineral, 1998, 36: 415-431.
- [14] Keller P, Robles E R, Perez A P, Fontan F. Chemistry, paragenesis and significance of tourmaline in pegmatites of the southern Tin Belt, central Namibia [J]. Chem Geol, 1999, 158: 203-225.
- [15] London D. Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles [J]. Eur J Mineral, 1999, 11: 253-262.
- [16] Selway J B, Novak M, Cerny P, Hawthorne F C. Compositional evolution of tourmaline in lepidolite-subtype pegmatites [J]. Eur J Mineral, 1999, 11: 569-584.
- [17] Dutrow B L, Henry D J. Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids [J]. Can Mineral, 2000, 38: 131-143.
- [18] Jiang S Y, Palmer M R, Yeats C J. Chemical and boron isotopic compositions of tournaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia [J]. Chem Geol, 2002, 188: 229-247.
- [19] Zhang A C, Wang R C, Jiang S Y, Hu H, Zhang H. Chemical and textural features of tourmaline from the spodume-subtype Koktokay No.3 pegmatite, Altai, Northwestern China: a record of magmatic to hydrothermal evolution [J]. Can Mineral, 2008a, 46: 41-58.
- [20] Zhang A C, Wang R C, Li Y L, Hu H, Lu X C, Ji J F, Zhang H. Tourmalines from the Koktokay No.3 pegmatite, Altai, NW China: spectroscopic characterization and relationships with the pegmatite evolution [J]. Eur J Mineral, 2008b, 20: 143-154.
- [21] 王贤觉, 邹天人, 徐建国, 于学元, 裘愉卓. 阿尔泰伟晶岩矿物研究[M]. 北京: 科学出版社, 1980: 1-140.
- [22] Liu C Q, Zhang H. The lanthanide tetrad effect in apatite from Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma [J]. Chem Geol, 2005, 214: 61-77.
- [23] 朱金初, 吴长年, 刘昌实, 等. 新疆阿尔泰可可托海 3 号伟晶岩脉岩浆-热液演化和成因[J]. 高校地质学报, 2000, 6(1): 40-52.
- [24] 张辉. 岩浆-热液过渡阶段体系中不相容元素地球化学行为及其机制—以新疆阿尔泰 3 号伟晶岩脉研究为例[D]. 贵阳: 中国科学院博士学 位论文, 2001.
- [25] 王汝成, 翟建平, 陈培荣, 等. 地球科学现代测试技术[M]. 南京: 南京大学出版社, 1999: 1-39.
- [26] 卢焕章, 王中刚, 李院生. 岩浆-热液过渡和阿尔泰三号伟晶岩脉之成因[J]. 矿物学报, 1996, 16(1): 1-7.
- [27] 张爱铖, 王汝成, 胡欢, 张辉, 朱金初, 谢磊. 阿尔泰可可托海 3 号伟晶岩脉中铌铁矿族矿物环带构造及其岩石学意义[J]. 地质学报, 2004, 78(2): 181-189.
- [28] London D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites [J]. Can Mineral, 1992, 30: 499-540.
- [29] Webster J D, Thomas R, Rhede D, Forster H J, Seltmann R. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for story tin enrichment in fluorine-rich and phosphorus-rich residual liquids [J]. *Geochim Cosmochim Acta*, 1997, 61: 2589-2604.
- [30] Wolf M B. and London D. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms [J]. Geochim Cosmochim Acta, 1994, 58: 4127-4145.
- [31] Webster J D, Holloway J R, Hervig R L. Partitioning of trace elements between H₂O and H₂O+CO₂ fluids and topaz rhyolite melt [J]. *Econ Geol*, 1989, 84: 116-134.
- [32] Bai T B, Van Groos A F K. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids [J]. Geochim Cosmochim Acta, 1999, 63: 1117-1131.
- [33] Zhang H, Liu C Q. Sr/Eu ratio in apatites as a recorder of fluid exsolution from pegmatite-forming melt [J]. Geochim Cosmochim Acta, 2001, 65(Special Suppl.): A3314.
- [34] Wang R C, Che X D, Zhang W L, Zhang A C, Zhang H. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China) [J]. Eur J Mineral, 2009, 21: 795-809.
- [35] Shearer C K, Papike J J, Simon S B, Laul J C. Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock [J]. Am Mineral, 1986, 71: 518-539.
- [36] 栾世伟, 毛玉元, 范良明, 巫晓兵, 林金辉. 可可托海地区稀有金属成矿与找矿[M]. 成都: 成都科技大学出版社, 1995: 192-194.
- [37] Morgan G B VI, London D. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba [J]. Am Mineral, 1987, 72: 1097-1121.

2015年