Journal of Earth Sciences and Environment

文章编号:1672-6561(2016)06-0778-13

贵州云炉河坝地区铅锌矿床元素地球化学特征、 碳氧同位素组成及其地质意义

金翔霖¹,孟昌忠¹,冷成彪²,齐有强²,唐永永²,张 海^{1,2},陈 星¹ (1.贵州省地质矿产勘查开发局--三地质大队,贵州 六盘水 553001; 2.中国科学院地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550081)

摘 要:黔西北是中国川滇黔铅锌成矿域的一个重要组成部分,以该区研究程度较低的云炉河坝地 区为研究对象,采用元素地球化学和碳氧同位素地球化学分析方法,对区内典型铅锌矿床(如吴星、 顺达、富强和狮子洞等)进行了研究。成矿元素和稀土元素分析结果表明,包括赋矿围岩在内的区 域各时代地层中的 Pb、Zn、Cu 等成矿元素含量普遍低于地壳克拉克值,不可能构成铅锌矿床的主 要物质来源,结合前人 S、Pb 同位素研究,推测该区铅锌矿床的成矿物质可能主要来自于基底岩 石。碳氧同位素分析结果表明,铅锌矿石和赋矿围岩的碳氧同位素组成整体上均接近海相碳酸盐 岩范围,说明相关流体主要来自于海相碳酸盐的溶解作用。然而,矿石与围岩相比却具有相对更高 的δ¹⁸O 值,表明成矿流体并非直接源自于赋矿地层,而更可能来自于深源流体的长距离迁移。此 外,个别方解石显示较低的δ¹³C 值(-10.9‰~-8.1‰,PDB),接近沉积有机物的碳同位素组成 范围,表明其受到了有机物脱羟基作用的影响。

Element Geochemical Characteristics and C-O Isotopic Compositions of Pb-Zn Deposit in Yunluheba Area of Guizhou and Their Geological Implications

JIN Xiang-lin¹, MENG Chang-zhong¹, LENG Cheng-biao², QI You-qiang², TANG Yong-yong², ZHANG Hai^{1,2}, CHEN Xing¹

 No. 113 Geological Team, Guizhou Provincial Bureau of Geology and Mineral Resources, Liupanshui 553001, Guizhou, China; 2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,

Chinese Academy of Sciences, Guiyang 550081, Guizhou, China)

Abstract: Northwestern Guizhou is an important area in Sichuan-Yunnan-Guizhou Pb-Zn metallogenic domain. Yunluheba area in the northwestern Guizhou was taken as the object of the study. The element geochemical characteristics and C-O isotopic compositions of typical Pb-Zn deposits in the area including Haoxing, Shunda, Fuqiang and Shizidong were studied. The results of metallogenic and earth rare elements show that the contents of metallogenic elements (Pb, Zn and Cu, etc.) from the strata with different ages including host rocks are generally lower than the Clark value of the continental crust; PAAS-normalized REE patterns have a wide range with

收稿日期:2016-04-23

基金项目:贵州省地质矿产勘查开发局地质科研项目(黔地矿科合(2014)02 号)

作者简介:金翔霖(1963-),男,贵州六枝人,高级工程师,E-mail:814142405@qq.com。

通讯作者:冷成彪(1982-),男,山东临沭人,副研究员,理学博士,E-mail:lengchengbiao@vip.gyig.ac.cn。

weak negative Ce anomaly and no-influencing from hydrothermal fluid. It is suggested that all the strata including host rocks do not supply the material sources for Pb-Zn deposits, but the characteristics are derived from the sedimentary environment. According to the previous result of S and Pb compositions, it is inferred that the main material sources of Pb-Zn deposits may be the basement rocks. The C-O Isotopic compositions show that dolomite has relatively high δ^{13} C values (-1.0%-1.1%, PDB) and δ^{18} O values (20.4%-23.6%, V-SMOW), whereas the asphalt has relatively low δ^{13} C values (-6.0%-3.9%) and δ^{18} O value (15.2%); most of the calcites have δ^{13} C values of -4.1%--0.5% and δ^{18} O values of 15.2%-21.3%, which are between those of dolomite and asphalt; C-O Isotopic values of Pb-Zn and host rocks are consistent with those of marine carbonate rocks as a whole, suggesting that they are mainly derived from the dissolution of marine carbonate. Pb-Zn rocks have higher δ^{18} O values than those of host rocks, suggesting that metallogenic fluids are not directly derived from host strata, and may be derived from the long-distance migration of deep source fluid. In addition, the individual calcite has lower δ^{13} C values (-10.9%--8.1%), which are consistent with C isotopic value of sedimentary organic material, so that the calcite suffers the dehydroxylation of organic material.

Key words: Pb-Zn deposit; element geochemistry; C-O isotope; carbonatite; ore-forming element; deep source fluid; Guizhou

0 引 言

密西西比河谷(MVT)型铅锌矿床是一类后生、 层控、以碳酸盐岩为赋矿围岩的矿床,资源量占全球 铅锌总量的 25 % [1-5]。川滇黔铅锌多金属成矿域位 于扬子地块西南缘,是中国重要的铅锌(银-镉)等金 属的生产基地^[6-11]。其中许多典型矿床被认为具有 MVT 型铅锌矿床的地质特征,如云南会泽麒麟 厂^[6]。黔西北地区是川滇黔铅锌成矿域的一个重要 组成部分[12-14]。区内已发现的铅锌矿床(点)超过 100 处, 矿床规模均属于中、小型, 目前暂无大型及 以上矿床的报道,而其邻区皆有大型、超大型铅锌矿 床的发现,如云南会泽麒麟厂、矿山厂和毛坪以及四 川天宝山、大梁子和银厂等矿床^[6,15-17]。因此,黔西 北地区一直被国土资源部列为中国急需加强地质工 作的重点成矿区带之一[16]。近年来,众多地质单位 在黔西北地区开展了大量的勘查工作,并从不同角 度对该区已有的铅锌矿床(点)进行了基础研 究^[17-26]。研究显示矿体多赋存于震旦系、石炭系、泥 盆系中粗晶白云岩中,矿体与围岩接触界线清晰,围 岩蚀变相对简单,主要为碳酸盐岩的白云岩化,矿体 多受到构造的控制等。

然而,位于黔西北与邻省交界的云炉河坝地区 成矿作用研究较少^[19,26],新一轮的勘探工作为深入 研究该地区提供了契机。研究区围岩地层发育广 泛,但是赋矿层位较为单一。此外,不含矿地层及矿 石脉石矿物中皆发育白云石、方解石,这为系统研究 赋矿围岩的成矿专属性以及成矿流体来源、地层方 解石脉与成矿关系等科学问题提供了条件。基于 此,本文以云炉河坝地区为研究对象,对区内主要矿 床(点)和区域碳酸盐岩地层进行系统的地质考察及 取样分析;通过对地层的岩石化学分析,探讨赋矿围 岩与成矿的关系;通过对矿石中方解石、白云石和沥 青以及围岩地层中方解石脉的碳氧同位素分析,揭 示成矿流体来源及围岩方解石脉与成矿的关系,从 而深化该地区铅锌成矿作用的认识。

1 地质背景与矿区地质概况

云炉河坝地区位于贵州省威宁县城西南约 110 km,为云南会泽超大型铅锌矿床 NE 向铅锌成矿带 的北延部分,长 90 km,宽 6~10 km(图 1)。矿区断 裂发育,褶皱较为简单,NE 向及 NW 向断裂控制了 矿化蚀变带及矿体的产出。该区 NE 向断裂构造发 育,主要以银厂坡一云炉河逆断层为代表,倾向 100°~150°,倾角 60°~70°,为左行高角度压扭性逆 冲断层,最大垂直断距为 1 743 m,控制着铅锌成矿 带的展布^[26]。研究区出露地层主要有中泥盆统独 山组,上泥盆统望城坡组和尧梭组,下石炭统汤粑沟 组、祥摆组、旧司组、上司组和摆佐组,上石炭统滑石 板组、达拉组和马平组,下二叠统梁山组和栖霞组 等^[19]。地层岩性以灰岩、白云岩、碎裂白云岩、白云 质灰岩为主,砂岩、页岩次之。已发现的矿床(点)或

图件引自文献[22],有所修改 图 1 黔西北铅锌矿集区区域地质图

Fig. 1 Regional Geological Map of Pb-Zn Mineralization Area in Northwestern Guizhou

矿化蚀变主要赋存于望城坡组泥质白云岩中。主要 采样地层的地质特征描述见表 1。

研究区主要代表性铅锌矿床(点)有顺达、富强、 吴星、狮子洞等(图 2),其中富强、吴星铅锌矿规模 较大,矿体主要产于断裂带内及其派生的羽状断层、 层间破碎带及多组断层交汇部位(图 3)。矿体在中 细一粗晶白云岩、灰质白云岩以及其上覆的泥质层、 细碎屑岩层等屏蔽层影响下,常形成似层状富铅 锌矿体,显示出断裂和岩性的双重控制作用。围 岩蚀变主要有碳酸盐岩的白云石化,其次为铁锰 碳酸盐化、方解石化、硅化。矿体具有分带性,从 地表浅部到深部依次为氧化矿、混合矿和原生硫 化矿,氧化矿与硫化矿的垂直高差通常为 50~200 m,个别矿床垂直高差为300~500 m。氧化矿在地

表1 云炉河坝地区铅锌矿床主要出露地层及其特征

Fab. 1	Main Exposure	Strata and	Characteristics	of Pb-Zn	Deposit in	Yunluheba Area
--------	---------------	------------	-----------------	----------	------------	----------------

		1
	地层	特征描述
	大埔组(C ₁₋₂ d)	灰白一灰黑色厚层块状白云岩,局部含燧石团块,生物碎屑化石
	摆佐组 (C ₁ b)	浅灰一灰色厚层块状细一中晶白云岩、白云质灰岩
	ト司4((C, a)	下部为灰色薄一中厚层泥一微晶灰岩、泥灰岩,夹杂色黏土岩;上部为灰色泥一微晶灰岩、泥灰岩、
石炭系	上可组(C13)	白云岩、白云质灰岩间夹杂色黏土岩
	旧司组(C ₁ j)	灰色中一厚层微一泥晶灰、泥灰岩,夹粉砂质页岩
	祥摆组(C ₁ x)	黑色页岩、碳质页岩和灰色薄一中层细粒石英砂岩夹煤层
	汤粑沟组 (C ₁ t)	深灰色厚层微一中晶白云岩,深灰色薄一中厚层细晶灰岩
	融县组(D ₃ r)	灰一深灰色厚层块状白云质灰岩、灰质白云岩及中厚层状细一粗晶白云岩,局部见方解石化
	尧梭组 (D ₃ y)	灰色厚层白云质灰岩、灰质白云岩及细一粗晶白云岩
		第二段(D ₃ w ²)下部为灰色薄层泥灰岩、微晶灰岩互层;中部为灰色薄层瘤状泥灰岩、泥灰岩及微晶灰
泥盆系	胡城坡组(D	岩;上部为微一泥晶灰岩、灰质白云岩,该层位亦有铅锌矿体产出。第一段(D ₃ w ¹)为灰一深灰色厚层
	主机收 组(D3 <i>0</i>)	细一粗晶白云岩,其中上部夹深灰色泥晶一微晶灰岩、泥质白云岩及页岩,岩石矿化蚀变强烈,为区内铅
		锌矿体的主要赋矿层位
	独山组(D ₂ ds)	灰色薄层泥灰岩、粉砂质黏土岩夹薄层粉砂岩及粉砂页岩

图 2 云炉河坝地区地质简图 Fig. 2 Simplified Geological Map of Yunluheba Area

表发育,常以淋滤后的铁帽为特点,可以作为深部找 矿的线索。

硫化矿中主要矿石矿物为方铅矿+闪锌矿+黄 铁矿(图 4),混合矿与氧化矿中的矿物组合为白铅 矿+黄铁矿+闪锌矿+纤锌矿+褐铁矿。硫化矿中 方铅矿为细粒自形、半自形,呈团块状、斑状、条带状 等,与闪锌矿、黄铁矿共生,或交代早期黄铁矿。闪 锌矿以细一粗晶、他形粒状集合体产出,在矿石中呈 团块状、斑状、条带状,与方铅矿、黄铁矿共生。黄铁 矿形成具有多期性,重结晶可使粒度增大,在矿石中 呈条带状、块状,与方铅矿、闪锌矿共生,或被后期的 闪锌矿和方铅矿交代。脉石矿物主要为白云石、方 解石和石英。硫化矿矿石主要呈粒状结构、交代结 构、包含碎裂状结构,常见块状构造、斑状构造、星散 状构造、角砾状构造;氧化矿矿石主要呈土状结构、 皮壳状结构。氧化矿具有与硫化矿一致的产状特 征,显示原地的表生氧化及淋滤作用。

图件引自文献[26] 图 3 云炉河坝地区富强铅锌矿床剖面

Fig. 3 Profile of Fuqiang Pb-Zn Deposit in Yunluheba Area

本区铅锌矿床为同期不同阶段成矿作用的产物。根据矿石结构构造、各种矿脉相互穿插关系,再结合显微镜下的矿相学研究,将铅锌矿床的成矿过 程划分为成岩期、成矿期和表生期3个阶段。其中, 成矿期又可以划分为3个成矿阶段(表 2):①阶段1 主要为黄铁矿+闪锌矿+白云石±方解石组合; ②阶段2为主成矿阶段,形成闪锌矿+方铅矿+黄 铁矿+方解石±石英±白云石组合;③阶段3为次 要成矿阶段,存在对早期矿物的改造和叠加作用,可 见晚期方铅矿交代早期的黄铁矿,闪锌矿在黄铁矿 边缘成矿以及在后期阶段发育大颗粒黄铁矿 (图 4)。表生期主要发育矿物有褐铁矿、菱锌矿、赤 铁矿、纤锌矿、白铅矿。该时期主要为在表生作用以及地表水、大气氧化条件下的淋滤、氧化作用。

2 样品采集及分析方法

本文对研究区主要出露地层(包括独山组、融 县组、望城坡组、尧梭组、汤粑沟组、祥摆组和旧司 组等)进行了系统采样,开展了常量元素和微量元 素的分析和对比。采集样品及岩性见表1。样品 均采自已知矿床(点)的外围,未见到明显的铅锌 矿化,因此,可排除金属矿化作用的影响。这些能 够代表区域地层的成矿元素背景值。全岩微量元 素含量在武汉上谱分析科技有限责任公司分析测

富强矿区构造发育的断层擦痕

(c) 昊星矿区粗晶闪锌矿

(e) 昊星矿区方铅矿+闪锌矿+方解石共生(反射光)

(b) 昊星矿区两期黄铁矿发育在白云石内

(d) 富强矿区条带状矿石主要为黄铁矿、方铅矿、闪锌矿

(f) 昊星矿区包含结构,黄铁矿边缘发育闪锌矿(反射光)

图 4 云炉河坝地区野外断层、矿石手标本及镜下照片 Fig. 4 Field Fault, Ore Specimens and Photomicrographs in Yunluheba Area

试中心利用 Agilent 7700e型 ICP-MS 仪分析完成。 样品的消解处理过程、分析精密度和准确度详见 文献[27]。

用于碳氧同位素分析测试的样品主要采自吴 星、狮子洞、富强和顺达等矿床以及矿区外围的尧 梭组、融县组、望城坡组等地层。样品特征详见 表 3。碳氧同位素分析在国家海洋局第三海洋研究 所稳定同位素实验室完成,采用 GasBench-IRMS 仪在线连续分析,使用 MAT253 质谱仪进行测试。 δ¹³C 值、δ¹⁸O值均以 PDB 国际标准为参考标准,分 析精度为±0.2‰。详细测试流程详见文献[28] 和[29]。

3 结果分析与讨论

3.1 成矿元素分析

不同时代地层中的 Zn、Pb、Cu 和 Fe 等成矿元 素含量总体较低(表 3),绝大多数样品元素含量低 于地壳克拉克值。1 件来自下石炭统祥摆组的碳质 泥岩具有相对较高的 Pb、Cu 和 Fe 含量;2 件来自 中泥盆统独山组的粉砂质泥岩和粉砂岩具有略高的 Pb、Zn、Cu 和 Fe 含量。主要赋矿地层望城坡组的 泥质白云岩和灰岩中成矿元素含量也变化较大。 Pb 含量(质量分数,下同)为 $(2\sim54)\times10^{-6}$,平均为 11. 6×10^{-6} (样本数为11个);Zn含量为 $(7\sim215)\times10^{-6}$ 表 2 云炉河坝地区铅锌矿床成矿阶段及矿物生成顺序 Tab. 2 Mineral Paragenetic Sequence and Stages of

Pb–Zn Deposit in Yunluheba Area

10⁻⁶,平均为49×10⁻⁶(样本数为11个);仅个别样 品的成矿元素含量略高于地壳克拉克值(图5)。与 其他地层样品相比,望城坡组显示相对富集金属元 素的特征。地层中元素含量总体较低的原因有两种 可能:①地层中成矿元素参与了成矿,从而造成地层 中元素含量的降低;②受控于地层沉积环境的影响, 其原始含量较低。鉴于 MVT 型铅锌矿床是一种后 生矿床,当地层参与成矿后,其金属含量应显示较均 一的特征^[2-3],但是所研究的大部分样品元素含量均 低于地壳克拉克值,且各自间又存在一定的差异,因 此,低原始含量应是各地层化学沉淀条件的差异造 成的。

张海等通过对云炉河坝地区矿石硫化物的 S、 Pb同位素研究,发现硫化物的δ³⁴ S值变化范围很

表 3 云炉河坝地区不同时代地层的主量元素、成矿元素与稀土元素分析结果

Tab. 3	Analysis Results of Major	. Metallogenic and Ea	rth Rare Elements of Strata	with Different Ages in	Yunluheba Area
140.0	marysis results of mayor	, metanogenie ana Ea	i in func Elements of Strata	when Different riges in	i unituneou meu

样品编号	JS14-44	XB14-66	RX14-75	TBG14-68	TBG14-67	TBG14-71	TBG14-72	TBG14-73	RX14-74	YS14-76	YS14-79	YS14-50	YS14-49	WCP14-52
地层	旧司组	祥摆组				汤粑沟组					尧桂	发组		望城坡组
岩性	白云质 灰岩	碳质泥岩	灰岩	硅质条带	灰岩	灰岩	灰岩	生物碎屑 灰岩	生物碎屑 灰岩	白云岩	白云岩	泥质 白云岩	白云岩	角砾岩
$w(\operatorname{Al}_2\operatorname{O}_3)/\%$	0.08	9.01	0.25	0.29	0.16	0.10	0.15	0.25	0.25	0.13	0.03	0.28	0.10	2.30
$w(CaO)/\frac{1}{2}$	51.30	0.16	32.60	5.33	52.20	54.90	54.90	54.50	35.30	31.30	31.60	31.70	52.10	48.70
$w(\mathrm{Fe}_2\mathrm{O}_3)/\%$	0.10	12.05	0.13	0.63	0.12	0.08	0.09	0.12	0.14	0.09	0.08	0.22	0.07	0.80
$w(K_2O)/\%$	0.05	1.67	0.06	0.04	0.03	0.02	0.03	0.06	0.07	0.05	0.03	0.06	<0.01	0.71
w(MgO)/%	0.46	0.42	19.15	0.06	0.55	0.51	0.48	0.51	17.75	20.70	21.10	20.50	3.12	0.76
w(MnO)/%	<0.01	<0.01	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	0.01	0.01	0.01	<0.01	0.02
$w(Na_2O)/\frac{0}{2}$	0.03	0.05	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.04	0.03	0.04
$w(SiO_2)/\%$	7.49	59.40	0.41	88.10	3.98	0.32	0.39	0.80	0.41	0.27	0.14	0.47	0.42	5.87
w(S)/%	0.04	0.67	0.01	0.01	0.02	0.02	0.02	0.02	<0.01	<0.01	<0.01	<0.01	0.01	0.02
w(Cu)/10 ⁻⁶	1	43	2	2	1	1	1	2	3	1	1	1	1	5
w(Pb)/10 ⁻⁶	2	37	10	2	<2	8	7	10	13	10	5	<2	<2	7
$w(V)/10^{-6}$	5	84	2	2	2	6	2	1	1	7	1	6	1	9
$w(Zn)/10^{-6}$	5	10	21	4	7	8	5	23	27	19	10	6	6	13
w(La)/10 ⁻⁶	0.50	42.00	1.25	1.40	1.64	3.57	2.48	3.53	0.94	0.69	0.19	1.39	0.71	3.16
w(Ce)/10 ⁻⁶	0.49	81.10	1.77	1.49	1.84	3.71	2.62	2.16	1.71	0.99	0.33	2.55	1.41	6.60
$w(Pr)/10^{-6}$	0.08	8.43	0.29	0.36	0.32	0.68	0.46	0.48	0.21	0.15	0.05	0.29	0.17	0.77
$w(Nd)/10^{-6}$	0.30	28.50	1.13	1.49	1.32	2.79	1.88	1.90	0.73	0.59	0.20	1.04	0.62	2.98
$w(Sm)/10^{-6}$	0.05	4.28	0.21	0.36	0.26	0.61	0.40	0.36	0.16	0.13	0.03	0.21	0.11	0.58
w(Eu)/10 ⁻⁶	0.01	0.77	0.04	0.07	0.07	0.15	0.09	0.08	0.02	0.03	0.01	0.04	0.03	0.10
$w(Gd)/10^{-6}$	0.05	3.90	0.27	0.35	0.35	0.71	0.45	0.44	0.16	0.13	0.05	0.21	0.09	0.53
$w(Tb)/10^{-6}$	0.01	0.70	0.03	0.05	0.05	0.11	0.07	0.07	0.02	0.01	0.01	0.04	0.02	0.08
w(Dy)/10 ⁻⁶	0.04	4.94	0.21	0.30	0.32	0.64	0.45	0.46	0.15	0.09	0.04	0.21	0.09	0.49
w(Ho)/10 ⁻⁶	0.01	1.04	0.04	0.06	0.07	0.15	0.10	0.10	0.03	0.02	0.01	0.04	0.02	0.10
$w(\mathrm{Er})/10^{-6}$	0.02	3.26	0.13	0.17	0.21	0.38	0.29	0.28	0.08	0.06	0.02	0.11	0.04	0.29
$w(Tm)/10^{-6}$	0.00	0.50	0.02	0.02	0.03	0.05	0.04	0.04	0.01	0.01	0.00	0.01	0.01	0.04
w(Yb)/10 ⁻⁶	0.02	3.58	0.11	0.12	0.16	0.27	0.22	0.19	0.09	0.05	0.02	0.10	0.04	0.28
w(Lu)/10 ⁻⁶	0.00	0.55	0.02	0.02	0.02	0.05	0.03	0.03	0.01	0.01	0.00	0.01	0.00	0.04
$w_{\rm REE}/10^{-6}$	1.59	183.63	5.53	6.24	6.66	13.86	9.57	10.13	4.32	2.95	0.96	6.24	3.36	16.05
Eu/Eu* 值	0.65	0.80	0.80	0.88	0.93	0.94	0.88	0.90	0.67	1.01	1.05	0.85	1.14	0.77
Ce/Ce*值	0.56	0.99	0.68	0.48	0.59	0.55	0.57	0.38	0.89	0.70	0.80	0.92	0.94	0.98

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

	1 1 / 1 - 10 - 5 - 1		M/(101 / 0/1	WCD14 04	WCD14 95	$WCD1 \downarrow 0$	WCD1/C	WCD14 2	WCD1/1	WCD14_9	DC1/17	DC14 97	DV14 CO	DV14 70	E014 E0
	A14 03	WUP14-14	WCP14-20	WCP14-34	WCP14-30	WCP14-8	WCP14-0	WCP14-5	WCP14-1	WCP14-2	DS14-17	0514-27	KA14-09	KA14-70a	FQ14-39
					呈功	收组					四日	山 3 <u>日</u> 	R# :	县组	畠独钏区
岩性白	}铁矿化 白云岩	碳质页岩	白云岩	白云岩	白云岩	含层孔虫 灰岩	含生物碎 屑灰岩	含生物碎屑 泥白云岩	泥质 白云岩	泥质 白云岩	粉砂质 泥岩	泥质粉 砂岩	铁帽	铁帽	氧化矿
$w(Al_2 O_3) / \%$	1.38	6.25	0.15	0.10	0.11	0.10	2.07	3.93	7.14	5.08	9.92	17.65	0.83	0.84	0.04
w(CaO)/% 3	32.70	21.40	30.80	30.90	31.10	31.00	42.60	24.30	14.85	23.10	17.90	5.79	49.50	45.80	30.80
$w(\operatorname{Fe}_2\operatorname{O}_3)/\%$	0.60	1.45	0.25	0.11	0.19	0.10	1.09	2.26	3.26	1.67	3.79	5.73	0.70	0.50	0.13
w(K ₂ O)/%	0.41	2.14	0.04	0.05	0.03	0.01	0.63	1.22	2.32	1.61	3.06	5.06	0.09	0.11	<0.01
w(MgO)/% 1	17.40	15.00	21.50	21.70	21.60	21.20	2.96	14.70	9.45	14.10	10.60	2.33	3.53	6.62	21.20
w(MnO)/%	0.01	0.02	0.02	0.02	0.02	0.01	0.03	0.04	0.03	0.03	0.07	0.12	0.05	0.04	0.02
w(Na ₂ O) / %	0.04	0.05	0.04	0.04	0.04	0.03	0.03	0.04	0.04	0.04	0.05	0.09	0.03	0.03	0.04
$w(SiO_2)/\%$	2.29	18.05	0.29	0.24	0.21	0.93	12.90	17.20	39.00	20.70	27.10	53.60	1.85	1.72	0.12
w(S)/10 ⁻⁶	0.02	1.00	0.02	0.01	0.03	0.01	0.02	0.03	2.13	1.09	0.89	0.06	<0.01	<0.01	<0.01
w(Cu)/10 ⁻⁶	3	8	1	1	1	2	5	9	9	7	12	58	4	4	1
w(Pb)/10 ⁻⁶	54	11	5	4	2	4	5	10	16	9	16	8	66	43	2
$w(V)/10^{-6}$	21	26	2	1	3	1	8	19	40	27	66	124	10	9	<1
w(Zn)/10 ⁻⁶	215	106	51	7	8	9	13	36	57	24	40	71	220	163	11
w(La)/10 ⁻⁶	5.82	17.50	0.99	0.45	0.57	0.73	8.27	14.10	27.10	18.50	29.00	53.50	4.47	5.47	0.60
w(Ce)/10 ⁻⁶	9.26	30.50	1.18	0.66	0.94	1.14	17.52	29.70	53.30	35.70	57.80	102.00	6.91	8.68	0.64
$w(Pr)/10^{-6}$	1.34	3.63	0.14	0.09	0.12	0.15	2.00	3.46	6.20	4.16	6.46	11.60	1.16	1.22	0.09
w(Nd)/10 ⁻⁶	5.18	13.10	0.52	0.34	0.49	0.59	7.69	13.70	23.30	16.20	23.90	43.30	4.75	4.98	0.36
$w(Sm)/10^{-6}$	1.02	2.44	0.11	0.07	0.09	0.13	1.70	3.05	4.94	3.44	4.89	8.24	1.02	1.09	0.08
w(Eu)/10 ⁻⁶	0.19	0.46	0.02	0.01	0.02	0.03	0.35	0.65	0.87	0.65	0.92	1.58	0.22	0.24	0.01
w(Gd)/10 ⁻⁶	0.97	2.22	0.12	0.07	0.10	0.15	1.63	2.94	4.49	3.21	4.15	7.11	1.09	1.09	0.11
w(Tb)/10 ⁻⁶	0.14	0.35	0.02	0.01	0.01	0.02	0.26	0.45	0.68	0.48	0.63	1.09	0.17	0.16	0.02
w(Dy)/10 ⁻⁶	0.86	2.14	0.12	0.07	0.09	0.14	1.58	2.66	4.16	2.87	3.58	6.30	0.97	1.00	0.10
w(Ho)/10 ⁻⁶	0.17	0.42	0.02	0.01	0.02	0.03	0.32	0.53	0.81	0.56	0.68	1.22	0.20	0.19	0.02
$w({\rm Er})/10^{-6}$	0.50	1.15	0.07	0.05	0.05	0.08	0.90	1.49	2.28	1.54	1.94	3.44	0.53	0.55	0.07
w(Tm)/10 ⁻⁶	0.07	0.17	0.01	0.01	0.01	0.01	0.14	0.21	0.32	0.22	0.28	0.51	0.08	0.07	0.01
w(Yb)/10 ⁻⁶	0.45	1.15	0.07	0.03	0.05	0.08	0.83	1.36	2.23	1.44	1.77	3.26	0.46	0.44	0.06
w(Lu)/10 ⁻⁶	0.06	0.17	0.01	0.01	0.01	0.01	0.13	0.20	0.33	0.20	0.25	0.48	0.07	0.07	0.01
$w_{\rm REE}/10^{-6}$ 2	26.04	75.50	3.41	1.88	2.56	3.29	43.31	74.46	130.98	89.08	136.22	243.75	22.09	25.27	2.17
Eu/Eu*值	0.82	0.84	0.75	0.90	0.94	0.80	0.88	0.93	0.78	0.83	0.87	0.88	0.88	0.93	0.64
Ce/Ce*值	0.76	0.88	0.73	0.76	0.84	0.80	0.99	0.98	0.95	0.94	0.98	0.95	0.70	0.77	0.62

续表3

注:w(•)为元素或化合物含量;w_{REE}为稀土元素总含量。

小(-1.5‰~2.7‰),且集中于零值附近,暗示矿区 S可能主要来自于幔源岩浆硫,同时 Pb 同位素组成 十分均一且集中,可能具有统一的铅来源^[26]。由于 黔西北地区铅锌矿床在不同时代的地层(震旦系— 二叠系)中均有分布,且各时期碳酸盐岩地层 Pb、Zn 的丰度均很低^[30],所以地层可能并未提供足量 Pb、 Zn 成矿物质。结合前人研究,推测云炉河坝地区围 岩地层在物质上未对铅锌成矿作用提供支持,成矿物质可能主要来自于该区的基底岩石。

3.2 稀土元素地球化学特征

研究区出露地层的稀土元素数据见表 3,配分 模式见图 6。总体上,各地层稀土元素含量差异较 大,稀土元素总含量为(0.96~243.75)×10⁻⁶,其中 独山组、祥摆组及望城坡组一段稀土元素总含量较

地壳克拉克值引自文献[31]

Fig. 5 Distribution of Contents of Metallogenic Elements of Exposure Strata in Yunluheba Area

高,尧梭组、汤粑沟组及旧司组稀土元素总含量相对 低,融县组稀土元素总含量处于中等水平。澳大利 亚后太古代页岩(PAAS)^[32]标准化之后,轻、重稀土 元素分馏不明显。 $w(La)_N/w(Yb)_N$ 值为0.59~1.67, 平均为 0.96; Eu 异常不显著, Eu/Eu*值为 0.64~ 1.14,平均为 0.86;Ce 异常在各地层中具有明显差 异,Ce/Ce* 值为 0. 38~0. 99,平均为 0. 79,总体显 示弱的负 Ce 异常。其中旧司组、汤粑沟组和望城 坡组二段碳酸盐岩具有较明显的负 Ce 异常。Ce 异 常通常与碳酸盐岩沉积时海水的氧化一还原状态有 关。在氧化条件下, Ce^{3+} 常被氧化成 Ce^{4+} ,进而在 溶液中产生沉淀,从而造成负 Ce 异常^[33]。后期地 表风化、蚀变、氧化淋滤影响不大,如融县组样品为 地表的铁帽,依然具有明显负 Ce 异常。总体上,负 Ce异常的样品一般具有较低的稀土元素总含量。 此外,稀土元素总含量较高的样品往往含有较多的 碳泥质、粉砂质成分,这是由于碳质岩富含有机质, 在表生环境下有机质通过化学吸附作用和有机配位 体络合作用而富集稀土元素^[34]。

富矿围岩望城坡组总体上显示出较高的稀土元 素含量[图 6(d)],与成矿元素含量相对较高的特征 一致。但是含矿与不含矿的围岩地层之间,其稀土 元素配分模式并未表现出差异[图 6(d)],皆为平坦 型,且未有热液流体改造的痕迹。因此,稀土元素总 含量的差异也来自其形成环境的不同。围岩地层的 成矿专属性与地层元素含量之间的关系并不密切, 基于矿床地质特征,推测围岩地层的成矿专属性可 能更多地通过岩石地层的物理学差异来完成,如区 域构造的控矿作用、地层岩石的粒度差异及岩石能 干度等方面。

3.3 碳氧同位素特征

云炉河坝地区铅锌矿床(点)及其赋矿地层碳氧 同位素组成及分布特征见表 4、图 7。白云石普遍具 有较高的碳氧同位素值, δ^{13} C_{PDB}值为 $-1.0\% \sim$ 1.1‰, δ^{18} O_{V-SMOW}值为 20.4‰ \sim 23.6‰。而两个沥 青样品具有较低的同位素值, δ^{13} C_{PDB}值介于 $-6.0\sim$

Fig. 6 PAAS-normalized REE Patterns of Rocks in Strata with Different Ages

-3.9%, δ^{18} O_{V-SMOW}值为 15.2%。大多数方解石的 δ^{13} C_{PDB}值为 $-4.1\%\sim 0.5\%$, δ^{18} O_{V-SMOW}值为 15.2‰ 21.3‰,介于白云石和沥青之间。图 7 列出地幔、海 相碳酸盐、沉积岩有机物以及邻区铅锌矿床的碳氧 同位素组成范围。研究区样品总体接近海相碳酸盐 范围,且与邻区会泽、天桥和杉树林矿区的碳氧同位 素组成范围一致,表明成矿流体中的 C、O 主要来自 于海相碳酸盐的溶解作用。其中, δ^{13} C_{PDB}为参照 PDB 国际标准的 δ^{13} C 值, δ^{18} O_{V-SMOW}为参照 V-SMOW 国际标准的 δ^{18} O 值。 研究区两件沥青样品显示出相对较低的碳氧同 位素组成,明显偏离沉积有机物的范围,暗示可能受 到成矿热液的影响,造成了碳同位素组成的升高及 氧同位素组成的降低。氧化矿内发育的方解石(如 样品 SD14-13c、SD14-42a)和尧梭组地层中的方解 石(样品 YS14-77、YS14-78a)也具有偏低的 δ^{13} C 值,接近沉积有机物区域,显示出受到沉积物中有机 物质脱羟基作用的影响和改造。

此外,围岩中的方解石与矿石中的方解石氧同 位素组成亦存在较大差异,其中与矿化有关的方解 石总体具有较高的 δ¹⁸O 值,而围岩方解石则明显偏

样品编号	矿物名称	采样位置	样品类型	$\delta^{13}C_{PDB}$ 值/‰	$\delta^{18}O_{PDB}\mathbf{G}/\%$	$\delta^{18} \mathrm{O}_{V\text{-}\mathrm{SMOW}} \mathbf{I} / \%$
467-5b	白云石	吴星矿区	原生硫化矿方铅矿+闪锌矿+黄铁矿+白云石, 浅灰色粒状自形—半自形白云石	-1.0	-10.2	20.4
467-5c	白云石	吴星矿区	原生硫化矿方铅矿+闪锌矿+黄铁矿+白云石, 浅灰色粒状自形—半自形白云石	0.4	-8.0	22.6
467-5a	白云石	吴星矿区	原生硫化矿方铅矿+闪锌矿+黄铁矿+白云石, 浅灰色粒状自形—半自形白云石	0.7	-7.0	23.6
YS14-78b	白云石	尧梭组	中晶白云岩中的白云石脉	1.1	-8.0	22.6
YS14-48	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	0.5	-9.2	21.3
YS14-51	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-1.1	-10.4	20.1
YS14-45	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-2.2	-13.9	16.6
YS14-46a	方解石	尧梭组	中晶白云岩,无色透明自形方解石脉	-4.1	-15.2	15.2
YS14-80b	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-0.2	-9.7	20.8
YS14-82	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-0.1	-9.6	20.9
YS14-77	方解石	尧梭组	白云岩,浅黄白色糖粒状半自形一他形方解石脉	-10.9	-11.5	19.0
YS14-47	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-1.0	-11.7	18.8
YS14-78a	方解石	尧梭组	浅棕色层状石笋(方解石)	-8.1	-11.8	18.7
YS14-81	方解石	尧梭组	中晶白云岩,乳白色自形晶方解石脉	-0.4	-9.9	20.7
RX14-64	方解石	融县组	白云质灰岩,方解石脉	-1.6	-11.2	19.3
TBG14-74	方解石	汤粑沟组	生物碎屑灰岩,乳白色自形晶方解石	-1.6	-11.6	18.9
RX14-70c	方解石	石桥矿区融县组	铁帽中的方解石晶簇	-0.9	-8.0	22.6
HX14-22b	方解石	吴星矿区	原生硫化矿,方铅矿+闪锌矿+黄铁矿+白云石, 浅灰色粒状自形—半自形白云石	0.3	-7.4	23.2
WCP14-4	方解石	望城坡组	热液爆破角砾岩充填的乳白色方解石	0.1	-7.1	23.6
SD14-13c	方解石	顺达矿区	氧化矿石,菱锌矿十方铅矿十褐铁矿	-10.1	-9.4	21.2
SD14-42a	方解石	狮子洞矿区	氧化矿铁帽内方解石晶簇	-9.8	-10.4	20.2
HX14-25b	方解石	昊星矿区	原生硫化矿,黄铁矿十白云石,浅灰色粒状 自形一半自形白云石	-0.1	-7.9	22.7
FQ14-58a	沥青	富强矿区	氧化矿,方铅矿+黄铁矿+闪锌矿+毒砂+沥青, 黑色沥青	-3.9	-15.2	15.2
SD14-11	沥青	顺达矿区	氧化矿,菱锌矿十方铅矿十褐铁矿十少量沥青	-6.0	-15.2	15.2

衣

Tab. 4 C-O Isotopic Compositions of Calcite, Dolomite and Bitumen from Pb-Zn Deposit in Yunluheba Area

注:ð¹⁸Oy-smow值与 ð¹⁸Oppb值的换算关系为 y=1.030 86x+30.86,x 为 ð¹⁸Oppb值,y 为 ð¹⁸Oy-smow值;ð¹⁸Oppb **为参照** PDB 国际标准的 ð¹⁸O 值。

低。这表明尽管二者都与海相碳酸盐岩的溶解作用 有关,但与成矿有关的流体并非来自矿区的围岩地 层,而更可能来自其他区域。大量针对 MVT 型铅 锌矿床的研究发现,铅锌成矿流体多非原地形成,常 经历长距离的搬运,进而在有利条件(如流体混合、 氧化-还原环境及构造活动等)下发生沉淀成矿^[3]。

4 结 语

(1)贵州云炉河坝地区不同时代碳酸盐岩的 Pb、Zn、Cu等成矿元素含量相对较低,普遍低于地 壳克拉克值,这主要受其化学沉积环境的影响。结 合前人有关 S、Pb 同位素研究,赋矿地层未能给铅 锌成矿提供主要的物质来源。

(2)不同时代碳酸盐岩的稀土元素含量差异较 大,显示弱的负 Ce 异常,与碳酸盐岩沉积时海水的 氧化-还原状态有关。稀土元素总含量较高的样品 往往含有较多的碳泥质,与有机质对稀土元素的吸 附作用有关。围岩地层未显示出热液流体改造的作 用,而受其化学沉积环境的影响。围岩地层的成矿 专属性与化学成分关系不明显。

(3)研究区地层及矿石内发育的方解石、白云石 及沥青的 δ¹³ C_{PDB} 值介于一10.9‰~1.1‰, δ¹⁸ O_{V-SMOW} 值为 15.5‰~23.6‰,总体接近海相碳酸盐范围, 表明流体的 C、O 主要来自于海相碳酸盐的溶解作

底图引自文献[35];会泽、天桥、杉树林矿区数据引自文献[23]、[24]、[36]~[40] 图 7 云炉河坝地区铅锌矿床方解石、白云石及沥青碳氧同位素组成图解

Fig. 7 Diagram of C-O Isotopic Compositions of Calcite, Dolomite and Bitumen from Pb-Zn Deposit in Yunluheba Area 用。矿石与围岩方解石C、O同位素的差异反映出 成矿流体非原地形成,可能来自远距离的搬运。个 别方解石样品显示较低的 δ¹³C 值,可能受到了有机 物脱羟基作用的影响。

参考文献:

References :

- [1] HITZMAN M W. Extensional Faults That Localize Irish Syndiagenetic Zn-Pb Deposits and Their Reactivation During Variscan Compression [J]. Geological Society, London, Special Publications, 1999, 155: 233-245.
- [2] BRADLEY D C, LEACH D L. Tectonic Controls of Mississippi Valley-type Lead-zinc Mineralization in Orogenic Forelands[J]. Mineralium Deposita, 2003, 38 (6):652-667.
- [3] LEACH D L, BRADLEY D C, LEWCHUK M T, et al. Mississippi Valley-type Lead-zinc Deposits Through Geological Time: Implications from Recent Age-dating Research [J]. Mineralium Deposita, 2001, 36(8):711-740.
- [4] PARADIS S, HANNIGAN P, DEWING K. Mississippi Valley-type Lead-zinc Deposits[C]//GOODFELLOW W D. Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. St. John's: Geological Association of Canada, 2007: 185-203.

- WILKINSON J J. On Diagenesis, Dolomitisation and [5] Mineralisation in the Irish Zn-Pb Orefield[J]. Mineralium Deposita, 2003, 38(8): 968-983.
- [6] ZHOU C X, WEI C S, GUO J Y, et al. The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints [J]. Economic Geology, 2001, 96(3), 583-598.
- [7] 张长青,毛景文,吴锁平,等.川滇黔地区 MVT 铅锌 矿床分布、特征及成因 [J]. 矿床地质, 2005, 24(3): 336 - 348.

ZHANG Chang-qing, MAO Jing-wen, WU Suo-ping, et al. Distribution, Characteristics and Genesis of Mississippi Valley-type Lead-zinc Deposits in Sichuan-Yunnan-Guizhou Area[J]. Mineral Deposits, 2005, 24(3): 336-348.

[8] 廖震文,王生伟,孙晓明,等.黔东北地区 MVT 型铅 锌矿床闪锌矿 Rb-Sr 定年及其地质意义[J]. 矿床地 质,2015,34(4):769-785. LIAO Zhen-wen, WANG Sheng-wei, SUN Xiao-ming,

et al. Rb-Sr Dating of Sphalerites from MVT Pb-Zn Deposits in Northeastern Guizhou Province and Its Geological Implications[J]. Mineral Deposits, 2015, 34 (4):769-785.

[9] 张茂富,周宗桂,熊索菲,等.云南会泽铅锌矿床闪锌 矿化学成分特征及其指示意义[J]. 岩石矿物学杂志, 2016,35(1):111-123.

> ZHANG Mao-fu, ZHOU Zong-gui, XIONG Suo-fei, et al. A Typomorphic Study of Sphalerite from the Huize Lead-zinc Deposit, Yunnan Province[J]. Acta Petro-

第6期 金翔霖,等:贵州云炉河坝地区铅锌矿床元素地球化学特征、碳氧同位素组成及其地质意义 789

logica et Mineralogica,2016,35(1):111-123.

- [10] 胡茂德,张洪瑞,贾敬伍,等. 云南兰坪李子坪铅锌矿 床的控矿构造、碳和氧同位素及稀土元素地球化学特 征[J]. 矿床地质,2015,34(5):1057-1071.
 HU Mao-de, ZHANG Hong-rui, JIA Jing-wu, et al. Structural Control, Oxygen and Carbon Isotope, and REE Geochemistry of Liziping Pb-Zn Ore Deposit, Lanping Basin, Yunnan Province[J]. Mineral Deposits,2015,34(5):1057-1071.
- [11] 聂 飞,董国臣,莫宣学,等. 云南保山西邑铅锌矿床 硫铅同位素地球化学特征研究[J]. 岩石学报,2015, 31(5):1327-1334.
 NIE Fei, DONG Guo-chen, MO Xuan-xue, et al. The Characteristics of Sulfur and Lead Isotopic Composi-

tions of the Xiyi Pb-Zn Deposit in Baoshan Block, Western Yunnan[J]. Acta Petrologica Sinica,2015,31 (5):1327-1334.

[12] 金中国,戴塔根,张应文.贵州水城铅锌矿带成矿条件 及控矿因素与成因 [J].矿产与地质,2005,19(5): 491-494.

> JIN Zhong-guo, DAI Ta-gen, ZHANG Ying-wen. Study of Ore Controlling Conditions and Metallogenic Regularity in Shuicheng Lead-zinc Ore Zone, Guizhou[J]. Mineral Resources and Geology, 2005, 19(5): 491-494.

- [13] 金中国,黄智龙. 黔西北铅锌矿床控矿因素及找矿模式[J]. 矿物学报,2008,28(4):467-472.
 JIN Zhong-guo, HUANG Zhi-long. Study on Controlling-ore Factors of Pb-Zn Deposits and Prospecting Model in the Area of South Western Guizhou[J]. Acta Mineralogica Sinica,2008,28(4):467-472.
- [14] 齐有强,胡瑞忠,张 海,等.贵州西北部基性侵入岩
 锆石 U-Pb 年代学、岩石地球化学特征及铅锌成矿意
 义[J].地质学报,2016,90(5):933-949.
 QI You-qiang, HU Rui-zhong, ZHANG Hai, et al.

Zircon U-Pb Geochronology and Geochemical Characteristics of the Mafic Intrusions in Northwestern Guizhou Province, and Their Significances to the Lead-zinc Mineralization [J]. Acta Geologica Sinica, 2016,90(5):933-949.

[15] 洪建磊,朱杰勇,孔志岗,等. 会泽县娜姑镇银厂铅锌 矿成矿条件及找矿方向研究 [J]. 矿产与地质,2010, 24(5):428-432.

> HONG Jian-lei, ZHU Jie-yong, KONG Zhi-gang, et al. Study on the Ore-forming Conditions and Prospecting Direction of Yinchang Lead Zinc Deposit in the Nagu, Huize County[J]. Mineral Resources and Geology, 2010,24(5):428-432.

- [16] 廖震文. 地物化综合找矿方法的一次成功尝试[J]. 地 质与勘探,2006,42(1):59-63.
 LIAO Zhen-wen. A Successful Exploration Attempt by Synthetic Geological-geophsical-geochemical Method[J]. Geology and Prospecting,2006,42(1):59-63.
- [17] 廖震文,邓小万.银厂坡铅锌银矿床地质构造特征及 找矿分析[J].贵州地质,2002,19(3):163-168.
 LIAO Zhen-wen, DENG Xiao-wan. Geological Structural Characteristic in Yinchangpo Pb-Zn-Ag Deposits and Its Prospecting Analysis[J]. Guizhou Geology, 2002,19(3):163-168.
- [18] 陈国勇,邹建波,谭 华,等.黔西北地区铅锌矿成矿规律探讨[J].贵州地质,2008,25(2):86-94.
 CHEN Guo-yong,ZOU Jian-bo,TAN Hua, et al. The Metallogenic Regulation of Lead-zinc Deposit in Northwest Guizhou [J]. Guizhou Geology, 2008, 25 (2):86-94.
- [19] 王佳武,杨胜堂,刘爱民. 滇黔相邻区银厂坡一石门冲 断褶皱带构造特征及构造控矿作用浅析 [J]. 贵州地 质,2008,25(1):21-25.
 WANG Jia-wu, YANG Sheng-tang, LIU Ai-min. The Structural Features and the Structural Control of the Mineralization of Yinchangpo-Shimenchong Zone of Bruchfalten in the Adjacent Area of Guizhou and Yunnan[J]. Guizhou Geology,2008,25(1):21-25.
- [20] 罗 卫,孔 令,金中国,等.黔西北地区铅锌矿床控 矿构造与成矿 [J].矿产与地质,2010,24(1):35-43.
 LUO Wei, KONG Ling, JIN Zhong-guo, et al. Study of Ore-controlling Structure and Mineralization Process of the Lead-zinc Deposits in the Northwest Guizhou[J].
 Mineral Resources and Geology,2010,24(1):35-43.
- [21] 杨红梅,刘重芃,段瑞春,等. 贵州铜仁卜口场铅锌矿床 Rb-Sr 与 Sm-Nd 同位素年龄及其地质意义[J]. 大地构造与成矿学,2015,39(5):855-865.
 YANG Hong-mei, LIU Chong-peng, DUAN Rui-chun, et al. Rb-Sr and Sm-Nd Isochron Ages of Bokouchang Pb-Zn Deposit in Tongren, Guizhou Province and Their Geological Implication[J]. Geotectonica et Metallogenia,2015,39(5):855-865.
- [22] ZHOU J X, HUANG Z L, ZHOU M F, et al. Constraints of C-O-S-Pb Isotope Compositions and Rb-Sr Isotopic Age on the Origin of the Tianqiao Carbonatehosted Pb-Zn Deposit, SW China[J]. Ore Geology Reviews, 2013, 53: 77-92.
- [23] ZHOU J X, HUANG Z L, Gao J G, et al. Geological and C-O-S-Pb-Sr Isotopic Constraints on the Origin of the Qingshan Carbonate-hosted Pb-Zn Deposit, Southwest China[J]. International Geology Review, 2013,

55(7):904-916.

- [24] ZHOU J X, HUANG Z L, LU Z C, et al. Geology, Isotope Geochemistry and Ore Genesis of the Shanshulin Carbonate-hosted Pb-Zn Deposit, Southwest China[J]. Ore Geology Reviews, 2014, 63: 209-225.
- [25] 罗应坤. 浅析黔西北地区铅锌矿成矿元素地球化学特征[J]. 矿产与地质,2009,23(4):322-325.
 LUO Ying-kun. Simple Analysis of Geochemical Feature of Mineral Elements in the Northwest Guizhou [J]. Mineral Resources and Geology, 2009, 23(4): 322-325.
- [26] 张 海,孟昌忠,齐有强,等.黔西北云炉河坝铅锌矿 集区成矿物质来源:S、Pb 同位素制约 [J].矿物学报, 2016,36(2):271-276.

ZHANG Hai, MENG Chang-zhong, QI You-qiang, et al. Sources of the Ore-forming Material from Yunluheba Ore Field in Northwest Guizhou Province, China: Constraints from S and Pb Isotope Geochemistry[J]. Acta Mineralogica Sinica, 2016, 36(2):271-276.

- [27] LIU Y S, ZONG K Q, KELEMEN P B, et al. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-pressure Metamorphism of Lower Crustal Cumulates[J]. Chemical Geology, 2008, 247(1/2):133-153.
- [28] 梁翠翠,尹希杰,徐勇航,等.GasBench [[-IRMS 测定 微量碳酸盐中碳氧同位素比值方法研究[J].同位素, 2015,28(1):41-47.

LIANG Cui-cui, YIN Xi-jie, XU Yong-hang, et al. Analytical Method for Carbon and Oxygen Isotope of Small Carbonate Samples with the GasBench []-IRMS Device[J]. Journal of Isotopes, 2015, 28(1): 41-47.

[29] 朱园园,邱海鸥,杜 永,等.应用 GasBench [[-IRMS 优化碳氧同位素分析方法[J]. 岩矿测试, 2014, 33 (6):789-794.

ZHU Yuan-yuan, QIU Hai-ou, DU Yong, et al. Evaluation and Optimization of Experimental Conditions for Carbon and Oxygen Isotopes Analysis Using GasBench I[-IRMS Method[J]. Rock and Mineral Analysis, 2014, 33(6):789–794.

- [30] 郑传仑. 黔西北铅锌矿的矿质来源[J]. 桂林冶金地质 学院学报,1994,14(2):113-124.
 ZHENG Chuan-lun. An Approach on the Source of Ore-forming Metals of Lead-zinc Deposits in Northwestern Part,Guizhou[J]. Jounal of Guilin College of Geology,1994,14(2):113-124.
- [31] RUDNICK R L, GAO S. Composition of the Continental Crust[M]// HOLLAND H D, TUREKIAN K K.

The Crust, Treatise on Geochemistry. Oxford: Elsevier-Pergamum, 2003: 1-64.

- [32] MCLENNAN S M. Rare Earth Elements in Sedimentary Rocks; Influence of Provenance and Sedimentary Processes[J]. Reviews in Mineralogy and Geochemistry, 1989,21(1):169-200.
- [33] ELDERFIELD H, GREAVES M J. The Rare Earth Elements in Seawater[J]. Nature, 1982, 296: 214-219.
- [34] HENDERSON P. Rare Earth Element Geochemistry [M]. Berlin: Elsevier, 2013.
- [35] 刘建明,刘家军. 滇黔桂金三角区微细浸染型金矿床 的盆地流体成因模式[J]. 矿物学报,1997,17(4): 448-456.

LIU Jian-ming, LIU Jia-jun. Basin Fluid Genetic Model of Sediment-hosted Micro-dissminated Gold Deposits in the Gold-triangle Area Between Guizhou, Guangxi and Yunnan[J]. Acta Mineralogica Sinica, 1997, 17(4): 448-456.

- [36] HAN R S, LIU C Q, HUANG Z L, et al. Geological Features and Origin of the Huize Carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China[J]. Ore Geology Reviews, 2007, 31(1/2/3/4):360-383.
- [37] HUANG Z L, LI X B, ZHOU M F, et al. REE and C-O Isotopic Geochemistry of Calcites from the Worldclass Huize Pb-Zn Deposits, Yunnan, China; Implications for the Ore Genesis[J]. Acta Geologica Sinica; English Edition, 2010, 84(3): 597-613.
- [38] LI W B, HUANG Z L, YIN M D. Isotope Geochemistry of the Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China: Implication for the Sources of Ore Fluid and Metals[J]. Geochemical Journal, 2007, 41(1):65-81.
- [39] 李文博,黄智龙,张 冠.云南会泽铅锌矿田成矿物质 来源:Pb、S、C、H、O、Sr 同位素制约[J].岩石学报, 2006,22(10):2567-2580.

LI Wen-bo, HUANG Zhi-long, ZHANG Guan. Sources of the Ore Metals of the Huize Ore Field in Yunnan Province:Constraints from Pb,S,C,H,O and Sr Isotope Geochemistry[J]. Acta Petrologica Sinica, 2006, 22(10):2567-2580.

 [40] 黄智龙,李文博,陈 进,等. 云南会泽超大型铅锌矿 床 C、O 同位素地球化学[J]. 大地构造与成矿学, 2004,28(1):53-59.
 HUANG Zhi-long,LI Wen-bo,CHEN Jin, et al. Car-

bon and Oxygen Isotope Geochemistry of the Huize Superlarge Pb-Zn Ore Deposits in Yunnan Province [J]. Geotectonica et Metallogenia, 2004, 28 (1): 53-59.