GYIG OpenIR  > 研究生  > 学位论文
月表热参数模型与月壤厚度的被动微波遥感理论分析
其他题名Study on lunar-surface thermal parameter models and a theoretic analysis of lunar soil thickness exploration using passive microwave remote sensing
李雄耀
学位类型博士
2006-11-29
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词月球 表面温度 太阳辐照度 月壤厚度 被动微波遥感
摘要利用被动微波遥感亮度温度数据反演月壤厚度是“嫦娥”探月工程的科学目标之一,也是人类探测月壤厚度的一种新的尝试。深入研究月表太阳辐射、月球内部热流以及月表温度的分布和变化规律,是解译遥感数据,反演月壤厚度的前提条件,也为进一步开展月球探测、开发利用月球资源乃至建立月球基地相关研究工作提供必要的参考。 本文根据月表有效太阳辐照度与太阳常数、日月距离和太阳辐射入射角的关系,建立了月表有效太阳辐照度的实时模型如下: (1) 其中, (2) (3) 通过对月表有效太阳辐照度实时模型的各个参数分析发现,影响月表有效太阳辐照度变化的主要因素是日地距离和太阳辐射入射角的变化。对模型的误差分析表明,从1950年到2050年的100年内,月表有效太阳辐照度计算结果的误差百分比小于0.28%,能更准确地反映月表有效太阳辐照度的变化情况。从2007年月表有效太阳辐照度的计算结果发现,该年内的月表有效太阳辐照度变化在1321.5~1416.6 W•m-2之间,平均为1368.0 W•m-2,一个月内的变化最小幅度为6.0 W•m-2,最大幅度为23.6 W•m-2。 在月表有效太阳辐照度的实时模型基础上,根据能量守恒和Stefan-Boltzmann定律,本文还得出了月表温度分布模型如下: (4) 其中,初始条件由下式决定, (5) 通过与月表温度实际观测结果的比较发现,当月表反射率、热发射率和热惯量分别取0.127、0.94和125 J•m-2•s-1/2•K-1时,模型的计算结果与实际观测值比较符合,能较好地预测理想条件下的月表温度。 月表热参数研究的一个重要应用就是解译对月被动微波遥感的亮度温度数据。在对月被动微波遥感探测中,辐射计获得的亮度温度反映了月球表层的热辐射特性。月球表层的热辐射与其自身的热状况紧密相关,结合文中建立的月表热参数模型,根据辐射传播理论进一步分析了对月微波遥感探测中,月球表层在不同情况下对亮度温度的贡献,确定了亮度温度随月表温度和月壤厚度的变化关系,对被动微波遥感探测月壤厚度的可能性和可能达到的精度进行了估算。 对月球表层的热辐射传播的分析发现,对月被动微波遥感探测获得的亮度温度受月球表层热辐射的控制,与月壤厚度具有指数相关性,并受到月表温度的影响。当月壤和月岩的复介电常数分别为2 + 0.005 j和9 + 1 j、相对磁导率均为1时,对应3.0GHz、7.8GHz、19.35GHz和37.0GHz四个频率的亮度温度与月壤厚度及月表温度的关系可分别近似表示为, 3.0GHz亮度温度: (6) 7.8GHz亮度温度: (7) 19.35GHz亮度温度: (8) 37.0GHz亮度温度: (9) 当月壤厚度和月表温度分别在0.5m~30m和100K~400K之间变化时,上述四个频率的亮度温度变化范围分别在212.5K~252.8K、207.4 K~266.7K、193.8 K~288.6K和174.0 K~310.9K之间。对于较低频率的被动微波遥感,亮度温度随月壤厚度的增大逐渐增大并趋于稳定;对较高频率的被动微波遥感,亮度温度随月壤厚度的增大会产生起伏波动,不利于用单波段反演月壤厚度。亮度温度梯度在频率较高时梯度较大,在很小的月壤厚度范围内很快就趋于0,不利于厚度较大时的月壤厚度反演,但对于厚度较小时的月壤厚度反演精度较高;同时,除3.0GHz外,7.8GHz、19.35GHz和37.0GHz三个频率的亮度温度梯度随月表温度的升高降幅较大,尤其是19.35GHz,适合在夜间对月壤厚度较小的地区进行更精确的探测。对于3.0GHz,其亮度温度梯度受月表温度变化的影响很小,能反映出较深层月壤厚度的信息,可以对月球进行全球全天时探测。若辐射计的分辨率为0.02K,3.0GHz频率对10m厚月壤的判别精度达到0.07m;对于20m厚月壤的精度为1.4m。当月壤厚度小于0.5m时,随着月壤厚度从0到0.5m增加,月球表层的亮度温度贡献呈先减小后增大的趋势,从而使某一亮度温度值可能对应存在两种不同的月壤厚度。因此,对于月壤厚度小于0.5m的区域,利用单波段被动微波遥感亮度温度反演月壤厚度是比较困难的。 在对月被动微波遥感探测中,可以利用月球夜晚时段的亮度温度数据判别月壤厚度是否小于0.5m。当月表温度为100K时,3.0GHz、7.8GHz、19.35GHz和37.0GHz四个频率的亮度温度判别参考值分别为212.9K、207.4K、193.5K和174.1K;月表温度为240K时,上述四个频率的亮度温度判别参考值分别为220.8K、226.8K、234.1K和237.2K。当亮度温度小于参考值时表示月壤厚度小于0.5m,反之,表示月壤厚度大于0.5m。更进一步地,可以根据月表温度的影响系数对月岩是否裸露于月表进行判断。当3.0GHz、7.8GHz、19.35GHz和37.0GHz四个频率的月表温度影响系数接近0.77、0.82、0.84和0.85时,可以认为月岩直接暴露于月表。
其他摘要Inversion of lunar soil thickness using brightness temperature, which obtained in lunar exploration using passive microwave remote sensing, is one of the scientific goals in the Chang’e lunar exploration project, and it is a new attempt in lunar soil thickness exploration by human. Further study in distribution and variation of lunar-surface solar radiation, lunar interior heat flow, and lunar-surface temperature are prior conditions of interpreting remote sensing data and inversing lunar soil thickness. It is also important for further exploring the Moon and exploiting the lunar resource, even for building the lunar base. In this study, we have constructed an effective solar irradiance real-time model according to the relationship between lunar-surface effective solar irradiance and solar constant, Sun-Moon distance, solar radiation incidence angle, which is expressed as follows: (1) Where, (2) (3) By analyzing the parameters in the lunar-surface effective solar irradiance, we have found that the Sun-Earth distance and the solar radiation incidence angle are the key factors which affect the lunar-surface effective solar irradiance. The error analysis of the model shows that the theoretic erroneous percentage of this model is less than 0.28% during the period from 1950 to 2050. It indicates that the model could accurately reflects the variation of lunar-surface effective solar irradiance. The results show that the total solar irradiance on the lunar surface would change form 1321.5 to 1716.6 W•m-2 in 2007, with the average is 1368.0 W•m-2. The minimum variation amplitude wthin a month is about 6.0 W•m-2, the maximum is about 23.6 W•m-2. Based on the lunar-surface effective solar irradiance real-time model, the conservation of energy, and the law of Stefan-Boltzmann, we have made the lunar-surface temperature distribution model as follows: (4) Where, the initial condition is determined by the following equation. (5) By comparing with the observations, we found that the computed results are consistent with the observations when the reflectivity, the thermal emissivity and the thermal inertia are 0.127, 0.94 and 125 J•m-2•s-1/2•K-1, respectively. In this case, the model could accurately predict the lunar-surface temperature in the ideal condition. An important application of lunar-surface thermal parameters is to interpreting brightness temperature data which obtained in lunar exploration using passive microwave remote sensing. In the exploration, the brightness temperature obtained by radiometer reflects the characters of thermal radiation in outermost lunar layer, which is related closely to its thermal condition. With the thermal parameters models have been made in this study, we further analyzed the brightness temperature contribution of outermost lunar layer in different thermal conditions in lunar exploration using passive microwave remote sensing, according to thermal radiation transfer theory; determined the relationship between brightness temperature and lunar-surface temperature, lunar soil thickness; and estimated the possibility and precision of lunar soil thickness exploration by passive microwave remote sensing. The analysis of thermal radiation transfer in the outermost lunar layer shows that the brightness temperature obtained in the lunar exploration using passive microwave remote sensing is controlled by the thermal radiation of outermost lunar layer. There is an exponential relativity between the brightness temperature and the lunar soil thickness, and the brightness temperature is also affected by the lunar surface temperature. When the complex permittivity is 2.0 + 0.005 j and 9.0 + 1.0 j for lunar soil and lunar rock respectively, and the relative magnetic permeability of lunar materials is 1, the brightness temperature of the outermost lunar layer at 3.0GHz, 7.8GHz, 19.35GHz and 37.0GHz could be expressed as follows: 3.0GHz: (6) 7.8GHz: (7) 19.35GHz: (8) 37.0GHz: (9) The brightness temperature would vary within the ranges of 212.5K~252.8K, 207.4K~266.7K, 193.8K~288.6K, and 174.0K~310.9K at those four frequencies, when the lunar soil thickness and the lunar surface temperature vary from 0.5m to 30m, and from 100K to 400K respectively. For the passive microwave remote sensing, brightness temperature increases with lunar soil thickness and shows a steady tendency at lower frequencies; in contrast, it is fluctuant at higher frequencies. Hence, it is disadvantageous to explore lunar soil thickness by a single band in passive microwave remote sensing. Moreover, the higher the frequency is, the larger the brightness temperature gradient would be. And it trends to be 0 in a case of a very small lunar soil thickness. Except for 3.0GHz, the decreasing amplitudes of brightness temperature gradient at 7.8GHz, 19.35GHz, and 37.0GHz are larger when the lunar surface temperature increases, especially at 19.35GHz. Those frequencies are suitable to make accurate explorations in those areas with smaller lunar soil thickness during the lunar night period. And we could explore the lunar soil thickness globally in the whole lunar day and night at 3.0GHz. If the resolution of microwave radiometer is 0.02K, at 3GHz, the exploring precision of lunar soil thickness is about 0.07m when the lunar soil thickness is about 10m, and about 1.4m when the lunar soil thickness is about 20m. When the lunar soil thickness is smaller than 0.5m, brightness temperature decreases firstly and then increases with lunar soil thickness ranging from 0 to 0.5m. It results in that a brightness temperature corresponds possibly to two different lunar soil thicknesses. So, it is difficult to inverse lunar soil thickness with single band brightness temperature in the area which lunar soil thickness is smaller than 0.5m. In lunar exploration using passive microwave remote sensing, the lunar soil thickness could be determined if it is smaller than 0.5m by the brightness temperature obtain in the lunar night period. The reference values to distinguish if the lunar soil thickness is smaller than 0.5m for 3.0GHz, 7.8GHz, 19.35GHz and 37.0GHz are 212.9K, 207.4K, 193.5K and 174.1K respectively, when the lunar-surface temperature is 100K. And they are 220.8K, 226.8K, 234.1K and 237.2K respectively, when the lunar-surface temperature is 240K. When the brightness temperature is smaller than the reference value, it indicates that the lunar soil thickness is smaller than 0.5m. In the contrast, it indicates the lunar soil thickness is larger than 0.5m. Moreover, we could determine wether the lunar rock is bareness by the influence coefficient of lunar-surface temperature. When the influence coefficient of lunar-surface temperature close to 0.77, 0.82, 0.84 and 0.85 for 3.0GHz, 7.8GHz, 19.35GHz and 37.0GHz respectively, we consider that the lunar rock is bareness.
页数140
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3290
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
李雄耀. 月表热参数模型与月壤厚度的被动微波遥感理论分析[D]. 地球化学研究所. 中国科学院地球化学研究所,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
月表热参数模型与月壤厚度的被动微波遥感理(5013KB)学位论文 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李雄耀]的文章
百度学术
百度学术中相似的文章
[李雄耀]的文章
必应学术
必应学术中相似的文章
[李雄耀]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。