GYIG OpenIR  > 环境地球化学国家重点实验室
Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model
Yan-Li Wang;  Xue-Yan Liu;  Wei Song;  Wen Yang;  Bin Han;  Xiao-Yan Dou;  XuDong Zhao;  Zhao-Liang Song;  Cong-Qiang Liu;  Zhi-Peng Bai
2017
发表期刊Tellus B: Chemical and Physical Meteorology
卷号69期号:1页码:1299672-
摘要

Nitrogen isotope (δ15N) has been employed to differentiate major sources of atmospheric N. However, it remains a challenge to quantify contributions of multiple sources based on δ15N values of the N mixture in atmospheric samples. This study measured δ15N of bulk N in PM2.5 at an urban site of Beijing during a severe haze episode of 22–30 January 2013 and a background site of Qinghai, north-western China from 6 September to 15 October 2013, then applied a Bayesian isotope mixing model (SIAR, Stable Isotope Analysis in R) to analyse the N sources. At Beijing site, δ15N values of PM2.5 (−4.1‰ to +13.5‰, +2.8 ± 6.4‰) were distributed within the range of major anthropogenic sources (including NH3 and NO2 from coal combustion, vehicle exhausts and domestic wastes/sewage). At Menyuan site, δ15N values of PM2.5 (+8.0‰ to +27.9‰, +18.5 ± 5.8‰) were significantly higher than that of potential sources (including NH3 and NO2 from biomass burning, animal wastes, soil N cycle, fertilizer application and dust N). High molar ratios of NH+ 4 to NO− 3 and/or SO2− 4 in PM2.5 at the background site suggested that the equilibrium of NH3 ↔ NH+ 4 caused apparent 15N enrichments in ammonium. Results of the SIAR model showed that 39 and 32% of bulk N in PM2.5 of Beijing site were contributed from N emissions of coal combustion and vehicle exhausts, respectively, whereas N in PM2.5 at Menyuan site was derived mainly from N emissions of biomass burning (46%) and NH3 volatilization (34%). These results revealed that the stoichiometry between NH3 and acidic gases plays an important role in controlling the bulk δ15N signatures of PM2.5 and emissions of reactive N from coal combustion and urban transportation should be strictly controlled to advert the risk of haze episodes in Beijing.

关键词Nitrogen Isotope Aerosol Air Pollution Source Apportionment Ammonium
收录类别SCI
语种英语
文献类型期刊论文
条目标识符http://ir.gyig.ac.cn/handle/42920512-1/8170
专题环境地球化学国家重点实验室
作者单位1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
2.Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
3.Chinese Academy for Environmental Planning, Beijing, China
4.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
5.Qinghai Environmental Monitoring Center, Xining, China
推荐引用方式
GB/T 7714
Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai. Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model[J]. Tellus B: Chemical and Physical Meteorology,2017,69(1):1299672-.
APA Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai.(2017).Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model.Tellus B: Chemical and Physical Meteorology,69(1),1299672-.
MLA Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai."Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model".Tellus B: Chemical and Physical Meteorology 69.1(2017):1299672-.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Source appointment o(1599KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai]的文章
百度学术
百度学术中相似的文章
[Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai]的文章
必应学术
必应学术中相似的文章
[Yan-Li Wang;Xue-Yan Liu;Wei Song;Wen Yang;Bin Han;Xiao-Yan Dou;XuDong Zhao;Zhao-Liang Song;Cong-Qiang Liu;Zhi-Peng Bai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。